Хромосомы (от хромо... и сома), органоиды клеточного ядра, совокупность которых определяет основные наследственные свойства клеток и организмов. Полный набор Х. в клетке, характерный для данного организма, называется кариотипом. В любой клетке тела большинства животных и растений каждая Х. представлена дважды: одна из них получена от отца, другая — от матери при слиянии ядер половых клеток в процессе оплодотворения. Такие Х. называются гомологичными, набор гомологичных Х. — диплоидным. В хромосомном наборе клеток раздельнополых организмов присутствует пара (или несколько пар) половых хромосом, как правило, различающихся у разных полов по морфологическим признакам; остальные Х. называются аутосомами. У млекопитающих в половых Х. локализованы гены, определяющие пол организма; у плодовой мушки дрозофилы пол определяется соотношением половых хромосом и аутосом (балансовая теория определения пола).
Первоначально Х. были описаны как интенсивно окрашивающиеся основными красителями плотные тельца (немецкий учёный В. Вальдейер, 1888). Однако оказалось, что внешний вид Х. существенно меняется на разных стадиях клеточного цикла, и как компактные образования с характерной морфологией Х. четко различимы в световом микроскопе лишь в период клеточного деления — в метафазе митоза и мейоза (рис. 1, 2). Основу Х. на всех стадиях клеточного цикла составляют хромонемы — нитевидные структуры, которые во время деления клетки плотно закручены, обусловливая спирализацию хромосом, а в неделящейся клетке раскручены (деспирализованы). При завершении деления клетки разошедшиеся к её полюсам Х. разрыхляются и окружаются ядерной мембраной. В период между двумя делениями клетки (эта стадия клеточного цикла называется интерфазой) деспирализация Х. продолжается и они становятся малодоступными для наблюдения в световой микроскоп. Морфология Х. эукариот существенно отличается от таковой у прокариот и вирусов. Прокариоты (доядерные) и вирусы содержат обычно одну линейную или кольцевую Х., которая не имеет надмолекулярной укладки и не отделена от цитоплазмы ядерной оболочкой. Понятие Х. к генетическому аппарату прокариот применимо лишь условно, т.к. оно сформировалось при изучении Х. эукариот и подразумевает наличие в Х. не только сложного комплекса биополимеров (нуклеиновых кислот и белков), но и специфической надмолекулярной структуры. Поэтому ниже даётся описание только Х. эукариот. Изменения внешнего вида Х. в клеточном и жизненном циклах обусловлены особенностями функционирования Х. Общий же принцип их организации, индивидуальность и непрерывность Х. в ряду клеточных поколений и организмов сохраняются неизменными. Доказательства тому получены при биохимическом, цитологическом и генетическом исследованиях Х. разных организмов. Они легли в основу хромосомной теории наследственности.
Молекулярные основы строения Х. Значение Х. как клеточных органоидов, ответственных за хранение, воспроизведение и реализацию наследственной информации, определяется свойствами биополимеров, входящих в их состав. Первая молекулярная модель Х. была предложена в 1928 Н. К. Кольцовым, предугадавшим принципы их организации. Запись наследственной информации в Х. обеспечивается строением молекулы дезоксирибонуклеиновой кислоты (ДНК), её генетическим кодом. В Х. сосредоточено около 99% всей ДНК(дезоксирибонуклеиновая кислота) клетки, остальная часть ДНК(дезоксирибонуклеиновая кислота) находится в других клеточных органоидах, определяя цитоплазматическую наследственность. ДНК(дезоксирибонуклеиновая кислота) в Х. эукариот находится в комплексе с основными белками — гистонами и с негистоновыми белками, которые обеспечивают сложную упаковку ДНК(дезоксирибонуклеиновая кислота) в Х. и регуляцию её способности к синтезу рибонуклеиновых кислот(РНК) — транскрипции.
Х. в интерфазе. Х. выполняет свои основные функции — репродукцию и транскрипцию — в интерфазе, поэтому строение Х. на этой стадии клеточного цикла представляет особый интерес. В интерфазе Х. плохо различимы потому, что в связи с активным синтезом РНК(рибонуклеиновая кислота) многие участки Х. (т. н. эухроматин) сильно раскручены; другие же (гетерохроматин) не участвуют в синтезе РНК(рибонуклеиновая кислота) и продолжают сохранять плотную упаковку (см. также Хромоцентр). В эухроматиновых участках, помимо элементарных дезоксирибонуклеопротеидных нитей (ДНП), имеются рибонуклеопротеидные частицы диаметром 200—500 , называемые РНП-гранулами, интергранулами и перихроматиновыми гранулами. Эти частицы представляют собой форму упаковки РНК(рибонуклеиновая кислота), синтезированной на Х. и соединённой с белком, и служат для завершения образования информационной РНК(рибонуклеиновая кислота) и переноса её в цитоплазму.
Для изучения интерфазных Х. используют либо биохимические методы выделения вещества Х. — хроматина и разделения его на эухроматин и гетерохроматин, либо электронно-микроскопическое исследование интактных ядер и изолированного хроматина; как модели интерфазных Х. используют гигантские Х. типа ламповых щёток из ооцитов животных и многонитчатые (политенные) Х. двукрылых. В Х. типа ламповых щёток неактивные участки имеют вид плотно упакованных структур — хромомер (рис. 2, 3), которые обнаруживаются и в Х. соматических клеток, особенно в профазе митоза, и рассматриваются как характерные морфологические, а возможно и функциональные, единицы Х. В участках Х., активно синтезирующих РНК(рибонуклеиновая кислота), хромомеры раскручиваются и образуют боковые петли, в которых молекулы РНК(рибонуклеиновая кислота), соединяясь с белком, образуют рибонуклеопротеиды (РНП) — частицы, представляющие собой форму упаковки генных продуктов и различающиеся в отдельных боковых петлях по размерам и морфологическим признакам. В политенных Х., возникающих в тканях двукрылых и некоторых растений за счёт многократной репликации (удвоения) исходной Х. без последующего расхождения дочерних Х., неактивные участки имеют форму дисков, а активные образуют вздутия — пуфы. В пуфах, так же как и в Х. типа ламповых щёток, содержатся частицы РНП диаметром 200—500 . Электронно-микроскопические и биохимические исследования показали, что и в хроматине, выделенном из клеток, и в интактных ядрах, и в гигантских Х. основной структурной единицей является дезоксирибонуклеопротеидная нить (ДНП) диаметром,100—200 .
Изучение политенных Х. в разных тканях и на разных стадиях развития двукрылых показало, что число и набор активных пуфов имеют тканевую и видовую специфичность. Это значит, что хотя все клетки многоклеточного организма имеют одинаковый набор генов, линейно расположенных в каждой Х., набор активных и неактивных в синтезе РНК(рибонуклеиновая кислота) участков Х. различается в каждом типе клеток и на разных стадиях развития, т. е. один и тот же участок находится в одних тканях в эухроматическом, в других — в гетерохроматическом состоянии. Отдельные участки Х. находятся в гетерохроматическом состоянии в интерфазе разных типов клеток; как правило, они отличаются присутствием высокоповторяющихся последовательностей ДНК(дезоксирибонуклеиновая кислота). Постоянно функционирующим в интерфазе всех типов клеток является ядрышковый организатор — участок Х., где сосредоточены гены рибосомной РНК(рибонуклеиновая кислота). В этой области формируется ядрышко, которое долго считали самостоятельным органоидом клетки. Оно является местом формирования предшественников рибосом.
Х. в интерфазном ядре отделены от цитоплазмы ядерной мембраной; многими участками (прежде всего, теломерами и центромерами) они соединены с ней, благодаря чему, как полагают, каждая Х. занимает в ядре определённое место. При подготовке клетки к делению в интерфазе происходит удвоение Х. Каждая Х. строит свою копию на основе полуконсервативной репликации ДНК(дезоксирибонуклеиновая кислота). Особенностью Х. эукариот является существование многих точек начала и завершения репликации (у прокариот лишь одна точка начала и одна точка завершения репликации). Этим обеспечивается возможность неодновременной репликации разных участков Х. в ходе синтетического периода и регуляция активности Х.
Х. в период митоза и мейоза. При переходе клетки к делению синтез ДНК(дезоксирибонуклеиновая кислота) и РНК(рибонуклеиновая кислота) в Х. прекращается, Х. приобретают всё более плотную упаковку (например, в одной Х. человека цепочка ДНК(дезоксирибонуклеиновая кислота) длиной 160 мм укладывается в объёме всего 0,5´10 мкм), ядерная мембрана разрушается и Х. выстраиваются на экваторе клетки. В этот период они наиболее доступны для наблюдения и изучения их морфологии. Основная структурная единица метафазных Х., так же как и интерфазных, — нить ДНП диаметром 100—200 , уложенная в плотную спираль. Некоторые авторы обнаруживают, что нити диаметром 100—200 образуют структуры второго уровня укладки — нити диаметром около 2000 , которые и формируют тело метафазной Х. Каждая метафазная Х. состоит из хроматид(рис. 3, 1), образовавшихся в результате репликации исходной интерфазной Х. Использование меченых и модифицированных предшественников ДНК(дезоксирибонуклеиновая кислота) позволило четко различать в Х., находящейся в метафазе митоза, дифференциально окрашенные хроматиды, благодаря чему было установлено, что при репликации Х. нередко происходит обмен участками между сестринскими хроматидами (кроссинговер). В классической цитологии придавалось большое значение матриксу метафазной Х., его считали обязательным компонентом, в который погружены спирализованные хромонемы. Современные цитологи рассматривают матрикс метафазных Х. как остаточный материал разрушающегося ядрышка; часто он вовсе не обнаруживается.
Формирование половых клеток у животных и растений сопровождается особым типом их деления — мейозом, и мейотические Х. имеют ряд особенностей по сравнению с митотическими. Прежде всего, при мейозе дочерние клетки получают вдвое уменьшенное число Х. (при митозе оно сохраняется одинаковым), что достигается благодаря конъюгации гомологичных Х. в профазе мейоза и двумя последовательными делениями клетки при одной репликации ДНК(дезоксирибонуклеиновая кислота) (подробнее см.(смотри) Мейоз). Кроме того, у мейотические Х. отмечаются временный перерыв профазы мейоза и возвращение их к интерфазному состоянию, когда Х. начинают активно синтезировать РНК(рибонуклеиновая кислота). В этом периоде у большинства изученных животных организмов наблюдаются Х. типа ламповых щёток (рис. 4). Наконец, Х. в метафазе мейоза отличаются более плотной упаковкой.
Несмотря на огромное число исследований, посвященных Х., изучение их структурной и функциональной организации продолжает оставаться одним из самых актуальных направлений современной биологии. Х. выполняют в клетке сложнейшие функции и имеют весьма сложную организацию, трудно поддающуюся изучению. Огромные успехи в понимании молекулярных основ строения Х. достигнуты в 60—70-е гг. 20 в. благодаря развитию молекулярной генетики. Эти успехи блестяще подтвердили основные положения хромосомной теории наследственности, углубив и развив их.
Лит.: Вильсон Э., Клетка и ее роль в развитии и наследственности, пер.(перевод) с англ.(английский), т. 1—2, М. — Л., 1936—40; Кольцов Н. К., Организация клетки, М. — Л., 1936; Прокофьева-Бельговская А. А., Строение хромосомы, в кн.: Ионизирующие излучения и наследственность, М., 1960 (Итоги науки. Биологические науки, в. 3); Кикнадзе И. И., Функциональная организация хромосом, Л., 1972; Де Робертис Э., Новинский В., Саэс Ф., Биология клетки, пер.(перевод) с англ.(английский), М., 1973; Левитский Г. А., Цитология растений. Избр. труды, М., 1976; Darlington С. D., Recent advances in cytology, 2 ed., L., 1937; Geitler L., Chromosomenbau, B., 1938 (Protoplasma-Monographien, Bd 14); Ris Н., Kubai D. F., Chromosome structure, «Annual Review of Genetics», 1970, v. 4, p. 236—94; Handbook of molecular cytology, ed. by Lima-de-Faria A., Amst. — L., 1969; Chromosome structure and function, N. Y., 1974.