Физиология (от греч.(греческий) phýsis – природа и ...логия) животных и человека, наука о жизнедеятельности организмов, их отдельных систем, органов и тканей и регуляции физиологических функций. Ф. изучает также закономерности взаимодействия живых организмов с окружающей средой, их поведение в различных условиях.
Классификация. Ф. – важнейший раздел биологии; объединяет ряд отдельных, в значительной мере самостоятельных, но тесно связанных между собой дисциплин. Различают общую, частную и прикладную Ф. Общая Ф. изучает основные физиологические закономерности, общие для различных видов организмов; реакции живых существ на разные раздражители; процессы возбуждения, торможения и т.п. Электрические явления в живом организме (биоэлектрические потенциалы) исследует электрофизиология. Физиологические процессы в их филогенетическом развитии у разных видов беспозвоночных и позвоночных животных рассматривает сравнительная физиология. Этот раздел Ф. служит основой эволюционной физиологии, которая изучает происхождение и эволюцию жизненных процессов в связи с общей эволюцией органического мира. С проблемами эволюционной Ф. неразрывно связаны и вопросы возрастной физиологии, исследующей закономерности становления и развития физиологических функций организма в процессе онтогенеза – от оплодотворения яйцеклетки до конца жизни. Изучение эволюции функций тесно соприкасается с проблемами экологической физиологии, исследующей особенности функционирования разных физиологических систем в зависимости от условий обитания, т. е. физиологической основы приспособлений (адаптаций) к разнообразным факторам внешней среды. Частная Ф. исследует процессы жизнедеятельности у отдельных групп или видов животных, например у с.-х.(сельскохозяйственный) животных, птиц, насекомых, а также свойства отдельных специализированных тканей (например, нервной, мышечной) и органов (например, почек, сердца), закономерности их объединения в специальные функциональные системы. Прикладная Ф. изучает общие и частные закономерности работы живых организмов и особенно человека в соответствии с их специальными задачами, например физиология труда, спорта, питания, авиационная физиология, космическая физиология, подводная и т.д.
Ф. подразделяют условно на нормальную и патологическую. Нормальная Ф. преимущественно исследует закономерности работы здорового организма, его взаимодействие со средой, механизмы устойчивости и адаптации функций к действию разнообразных факторов. Патологическая физиология изучает измененные функции больного организма, процессы компенсации, адаптации отдельных функций при различных заболеваниях, механизмы выздоровления и реабилитации. Ветвь патологической Ф. – клиническая Ф., выясняющая возникновение и течение функциональных отправлений (например, кровообращения, пищеварения, высшей нервной деятельности) при болезнях животных и человека.
Связь физиологии с другими науками. Ф. как раздел биологии тесно связана с морфологическими науками – анатомией, гистологией, цитологией, т.к. морфологические и физиологические явления взаимообусловлены. Ф. широко использует результаты и методы физики, химии, а также кибернетики и математики. Закономерности химических и физических процессов в организме изучаются в тесном контакте с биохимией, биофизикой и бионикой, а эволюционные закономерности – с эмбриологией. Ф. высшей нервной деятельности связана с этологией, психологией, физиологической психологией и педагогикой. Ф. с.-х.(сельскохозяйственный) животных имеет непосредственное значение для животноводства, зоотехнии и ветеринарии. Наиболее тесно Ф. традиционно связана с медициной, использующей её достижения для распознавания, профилактики и лечения различных заболеваний. Практическая медицина, в свою очередь, ставит перед Ф. новые задачи исследований. Экспериментальные факты Ф. как базисной естественной науки широко используются философией для обоснования материалистического мировоззрения.
Методы исследования. Прогресс Ф. неразрывно связан с успехами методов исследования. «... Наука движется толчками, в зависимости от успехов, делаемых методикой. С каждым шагом методики вперед мы как бы поднимаемся ступенью выше...» (Павлов И. П., Полное собрание соч.(сочинение), т. 2, кн. 2, 1951, с. 22). Исследование функций живого организма базируется как на собственно физиологических методах, так и на методах физики, химии, математики, кибернетики и др. наук. Такой комплексный подход позволяет изучать физиологические процессы на различных уровнях, в том числе на клеточном и молекулярном. Основные методы познания природы физиологических процессов, закономерностей работы живых организмов – наблюдения и эксперимент, проводимый на разных животных и в различных формах. Однако всякий эксперимент, поставленный на животном в искусственных условиях, не имеет абсолютного значения, а результаты его не могут быть безоговорочно перенесены на человека и животных, находящихся в естественных условиях.
В т. н. остром эксперименте (см. Вивисекция) применяются искусственная изоляция органов и тканей (см. Изолированные органы), иссечение и искусственное раздражение различных органов, отведение от них биоэлектрических потенциалов и др. Хронический опыт позволяет неоднократно повторять исследования на одном объекте. В хроническом эксперименте в Ф. используют различные методические приёмы: наложение фистул, выведение исследуемых органов в кожный лоскут гетерогенные анастомозы нервов, пересадку различных органов (см. Трансплантация), вживление электродов и т.д. Наконец, в хронических условиях изучают сложные формы поведения, для чего используют методики условных рефлексов или различные инструментальные методики в сочетании с раздражением мозговых структур и регистрацией биоэлектрической активности через вживленные электроды. Внедрение в клиническую практику множественных долгосрочно вживленных электродов, а также микроэлектродной техники с целью диагностики и лечения позволило расширить исследования нейрофизиологических механизмов психической деятельности человека. Регистрация локальных изменений биоэлектрических и обменных процессов в динамике создала реальную возможность выяснения структурной и функциональной организации мозга. При помощи различных модификаций классической методики условных рефлексов, а также современных электрофизиологических методов достигнуты успехи в изучении высшей нервной деятельности. Клинические и функциональные пробы у людей и животных – также одна из форм физиологического эксперимента. Особый вид физиологических методов исследования – искусственное воспроизведение патологических процессов у животных (рак, гипертония, базедова болезнь, язвенная болезнь и др.), создание искусственных моделей и электронных автоматических устройств, имитирующих работу мозга и функции памяти, искусственные протезы и т.д. Методические усовершенствования в корне изменили экспериментальную технику и способы регистрации экспериментальных данных. На смену механическим системам пришли электронные преобразователи. Оказалось возможным более точно исследовать функции целого организма путём применения на животных и людях методик электроэнцефалографии, электрокардиографии, электромиографии и особенно биотелеметрии. Использование стереотаксического метода позволило успешно исследовать глубоко расположенные структуры мозга. Для регистрации физиологических процессов широко применяют автоматическое фотографирование с электроннолучевых трубок на плёнку или запись с помощью электронных приборов. Всё большее распространение получает регистрация физиологических экспериментов на магнитной и перфорационной ленте и последующая их обработка на ЭВМ(электронная вычислительная машина). Метод электронной микроскопии нервной системы позволил с большей точностью изучать структуру межнейронных контактов и определять их специфику в различных системах мозга.
Исторический очерк. Первоначальные сведения из области Ф. были получены в глубокой древности на базе эмпирических наблюдений натуралистов и врачей и особенно анатомических вскрытий трупов животных и людей. На протяжении многие веков во взглядах на организм и его отправления господствовали идеи Гиппократа(5 в. до н. э.(наша эра)) и Аристотеля (4 в. до н. э.(наша эра)). Однако наиболее существенный прогресс Ф. был определён широким внедрением вивисекционных экспериментов, начало которых было положено ещё в Древнем Риме Галеном (2 в. до н. э.(наша эра)). В средние века накопление биологических знаний определялось запросами медицины. В эпоху Возрождения развитию Ф. способствовал общий прогресс наук.
Ф. как наука ведёт своё начало от работ английского врача У. Гарвея, который открытием кровообращения (1628) «... делает науку из физиологии (человека, а также животных)» (Энгельс Ф., Диалектика природы, 1969, с. 158). Гарвеем были сформулированы представления о большом и малом кругах кровообращения и о сердце как двигателе крови в организме. Гарвей первый установил, что кровь по артериям течёт от сердца и по венам возвращается к нему. Основу для открытия кровообращения подготовили исследования анатомов А. Везалия, испанского учёного М. Сервета (1553), итальянского – Р. Коломбо (1551), Г. Фаллопия и др. Итальянский биолог М. Мальпиги, впервые (1661) описавший капилляры, доказал правильность представлений о кровообращении. Ведущим достижением Ф., определившим её последующую материалистическую направленность, явилось открытие в 1-й половине 17 в. французским учёным Р. Декартом и позже (в 18 в.) чеш.(чешский) врачом Й. Прохаской рефлекторного принципа, согласно которому всякая деятельность организма является отражением – рефлексом – внешних воздействий, осуществляющихся через центральную нервную систему. Декарт предполагал, что чувствительные нервы являются приводами, которые натягиваются при раздражении и открывают клапаны на поверхности мозга. Через эти клапаны выходят «животные духи», которые направляются к мышцам и вызывают их сокращение. Открытием рефлекса был нанесён первый сокрушит, удар церковно-идеалистическим представлениям о механизмах поведения живых существ. В дальнейшем «... рефлекторный принцип в руках Сеченова стал оружием культурной революции в шестидесятых годах прошлого столетия, а через 40 лет в руках Павлова он оказался мощным рычагом, повернувшим на 180° всю разработку проблемы психического» (Анохин П. К., От Декарта до Павлова, 1945, с. 3).
В 18 в. в Ф. внедряются физические и химические методы исследования. Особенно активно применялись идеи и методы механики. Так, итальянский учёный Дж. А. Борелли ещё в конце 17 в. использует законы механики для объяснения движений животных, механизма дыхательных движений. Он же применил законы гидравлики к изучению движения крови в сосудах. Английский учёный С. Гейлс определил величину кровяного давления (1733). Французский учёный Р. Реомюр и итальянский натуралист Л. Спалланцани исследовали химизм пищеварения. Франц. учёный А. Лавуазье, исследовавший процессы окисления, пытался на основе химических закономерностей приблизиться к пониманию дыхания. Итальянский учёный Л. Гальвани открыл «животное электричество», т. е. биоэлектрические явления в организме.
К 1-й половине 18 в. относится начало развития Ф. в России. В открытой в 1725 Петербургской АН(Академия наук) была создана кафедра анатомии и Ф. Возглавлявшие её Д. Бернулли, Л. Эйлер, И. Вейтбрехт занимались вопросами биофизики движения крови. Важными для Ф. были исследования М. В. Ломоносова, придававшего большое значение химии в познании физиологических процессов. Ведущую роль в развитии Ф. в России сыграл медицинский факультет Московского университета, открытого в 1755. Преподавание основ Ф. вместе с анатомией и др. медицинскими специальностями было начато С. Г. Зыбелиным. Самостоятельная кафедра Ф. в университете, которую возглавили М. И. Скиадан и И. И. Вечь, была открыта в 1776. Первая диссертация по Ф. выполнена Ф. И. Барсук-Моисеевым и посвящена дыханию (1794). В 1798 была основана Петербургская медико-хирургическая академия (ныне Военно-медицинская академия им. С. М. Кирова), где в дальнейшем Ф. также получила значительное развитие.
В 19 в. Ф. окончательно отделилась от анатомии. Определяющее значение для развития Ф. в это время имели достижения органической химии, открытие закона сохранения и превращения энергии, клеточного строения организма и создание теории эволюционного развития органического мира.
В начале 19 в. считали, что химические соединения в живом организме принципиально отличны от неорганических веществ и не могут быть созданы вне организма. В 1828 нем.(немецкий) химик Ф. Вёлер синтезировал из неорганических веществ органическое соединение – мочевину и тем самым подорвал виталистические представления об особых свойствах химических соединений организма. Вскоре нем.(немецкий) учёный Ю. Либих, а затем и многие другие учёные синтезировали различные органические соединения, встречающиеся в организме, и изучили их структуру. Эти исследования положили начало анализу химических соединений, участвующих в построении организма и обмене веществ. Развернулись исследования обмена веществ и энергии в живых организмах. Были разработаны методы прямой и непрямой калориметрии, позволившие точно замерять количество энергии, заключённой в различных пищевых веществах, а также освобождаемой животными и человеком в покое и при работе (работы В. В. Пашутина, А. А. Лихачева в России, М. Рубнера в Германии, Ф. Бенедикта, У. Этуотера в США и др.); определены нормы питания (К. Фойт и др.). Значительное развитие получила Ф. нервно-мышечной ткани. Этому способствовали разработанные методы электрического раздражения и механической графической регистрации физиологических процессов. Нем. учёный Э. Дюбуа-Реймон предложил санный индукционный аппарат, нем.(немецкий) физиолог К. Людвиг изобрёл (1847) кимограф, поплавковый манометр для регистрации кровяного давления, кровяные часы для регистрации скорости кровотока и пр. Французский учёный Э. Марей первый применил фотографию для изучения движений и изобрёл прибор для регистрации движений грудной клетки, итальянский учёный А. Моссо предложил прибор для изучения кровенаполнения органов (см. Плетизмография), прибор для исследования утомления (эргограф) и весовой стол для изучения перераспределения крови. Были установлены законы действия постоянного тока на возбудимую ткань (нем. учёный Э. Пфлюгер, рус.(русский) – Б. Ф. Вериго,), определена скорость проведения возбуждения по нерву (Г. Гельмгольц). Гельмгольц же заложил основы теории зрения и слуха. Применив метод телефонического выслушивания возбуждённого нерва, рус.(русский) физиолог Н. Е. Введенский внёс значительный вклад в понимание основных физиологических свойств возбудимых тканей, установил ритмический характер нервных импульсов. Он показал, что живые ткани изменяют свои свойства как под действием раздражителей, так и в процессе самой деятельности. Сформулировав учение об оптимуме и пессимуме раздражения, Введенский впервые отметил реципрокные отношения в центральной нервной системе. Он первый начал рассматривать процесс торможения в генетической связи с процессом возбуждения, открыл фазы перехода от возбуждения к торможению. Исследования электрических явлений в организме, начатые итал.(итальянский) учёными Л. Гальвани и А. Вольта, были продолжены нем.(немецкий) учёными – Дюбуа-Реймоном, Л. Германом, а в России – Введенским. Рус. учёные И. М. Сеченов и В. Я. Данилевский впервые зарегистрировали электрические явления в центральной нервной системе.
Развернулись исследования нервной регуляции физиологических функций с помощью методик перерезок и стимуляции различных нервов. Нем. учёные братья Э. Г. и Э. Вебер открыли тормозящее действие блуждающего нерва на сердце, рус.(русский) физиолог И. Ф. Цион – учащающее сердечные сокращения действие симпатического нерва, И. П. Павлов – усиливающее действие этого нерва на сердечные сокращения. А. П. Вальтер в России, а затем К. Бернар во Франции обнаружили симпатические сосудосуживающие нервы. Людвиг и Цион обнаружили центростремительные волокна, идущие от сердца и аорты, рефлекторно изменяющие работу сердца и тонус сосудов. Ф. В. Овсянников открыл сосудодвигательный центр в продолговатом мозге, а Н. А. Миславский подробно изучил открытый ранее дыхательный центр продолговатого мозга.
В 19 в. сложились представления о трофической роли нервной системы, т. е. о её влиянии на процессы обмена веществ и питание органов. Франц. учёный Ф. Мажанди в 1824 описал патологические изменения в тканях после перерезки нервов, Бернар наблюдал изменения углеводного обмена после укола в определённый участок продолговатого мозга («сахарный укол»), Р. Гейденгайн установил влияние симпатических нервов на состав слюны, Павлов выявил трофическое действие симпатических нервов на сердце. В 19 в. продолжалось становление и углубление рефлекторной теории нервной деятельности. Были подробно изучены спинномозговые рефлексы и проведён анализ рефлекторной дуги. Шотл. учёный Ч. Белл в 1811, а также Мажанди в 1817 и нем.(немецкий) учёный И. Мюллеризучили распределение центробежных и центростремительных волокон в спинномозговых корешках (Белла – Мажанди закон). Белл в 1826 высказал предположение об афферентных влияниях, идущих от мышц при их сокращении в центральную нервную систему. Эти взгляды были затем развиты русскими учёными А. Фолькманом, А. М. Филомафитским. Работы Белла и Мажанди послужили толчком для развития исследований по локализации функций в мозге и составили основу для последующих представлений о деятельности физиологических систем по принципу обратной связи. В 1842 французский физиолог П. Флуранс, исследуя роль различных отделов головного мозга и отдельных нервов в произвольных движениях, сформулировал понятие о пластичности нервных центров и ведущей роли больших полушарий головного мозга в регуляции произвольных движений. Выдающееся значение для развития Ф. имели работы Сеченова, открывшего в 1862 процесс торможенияв центральной нервной системе. Он показал, что раздражение мозга в определённых условиях может вызывать особый тормозной процесс, подавляющий возбуждение. Сеченовым было также открыто явление суммации возбуждения в нервных центрах. Работы Сеченова, показавшего, что «... все акты сознательной и бессознательной жизни, по способу происхождения, суть рефлексы» («Рефлексы головного мозга», см.(смотри) в кн.: Избранные философские и психологические произв.(произведение), 1947, с. 176), способствовали утверждению материалистической Ф. Под влиянием исследований Сеченова С. П. Боткин и Павлов ввели в Ф. понятие нервизма, т. е. представление о преимущественном значении нервной системы в регулировании физиологических функций и процессов в живом организме (возникло как противопоставление понятию о гуморальной регуляции). Изучение влияний нервной системы на функции организма стало традицией рус.(русский) и сов.(советский) Ф.
Во 2-й половине 19 в. с широким применением метода экстирпации (удаления) было начато изучение роли различных отделов головного и спинного мозга в регуляции физиологических функций. Возможность прямого раздражения коры больших полушарий была показана нем.(немецкий) учёными Г. Фричем и Э. Гитцигом в 1870, а успешное удаление полушарий осуществлено Ф. Гольцем в 1891 (Германия). Широкое развитие получила экспериментально-хирургическая методика (работы В. А. Басова, Л. Тири, Л. Велла, Р. Гейденгайна, Павлова и др.) для наблюдения над функциями внутренних органов, особенно органов пищеварения, Павлов установил основные закономерности в работе главных пищеварительных желёз, механизм их нервной регуляции, изменение состава пищеварительных соков в зависимости от характера пищевых и отвергаемых веществ. Исследования Павлова, отмеченные в 1904 Нобелевской премией, позволили понять работу пищеварительного аппарата как функционально целостной системы.
В 20 в. начался новый этап в развитии Ф., характерной чертой которого был переход от узкоаналитического понимания жизненных процессов к синтетическому. Огромное влияние на развитие отечественной и мировой Ф. оказали работы И. П. Павлова и его школы по Ф. высшей нервной деятельности. Открытие Павловым условного рефлекса позволило на объективной основе приступить к изучению психических процессов, лежащих в основе поведения животных и человека. На протяжении 35-летнего исследования высшей нервной деятельности Павловым установлены основные закономерности образования и торможения условных рефлексов, физиология анализаторов, типы нервной системы, выявлены особенности нарушения высшей нервной деятельности при экспериментальных неврозах, разработана корковая теория сна и гипноза, заложены основы учения о двух сигнальных системах. Работы Павлова составили материалистический фундамент для последующего изучения высшей нервной деятельности, они дают естественнонаучное обоснование теории отражения, созданной В. И. Лениным.
Крупный вклад в исследования Ф. центральной нервной системы внёс английский физиолог Ч. Шеррингтон, который установил основные принципы интегративной деятельности мозга: реципрокное торможение, окклюзию, конвергенцию возбуждений на отдельных нейронах и т.д. Работы Шеррингтона обогатили Ф. центральной нервной системы новыми данными о взаимоотношении процессов возбуждения и торможения, о природе мышечного тонуса и его нарушении и оказали плодотворное влияние на развитие дальнейших исследований. Так, голландский учёный Р. Магнус изучил механизмы поддержания позы в пространстве и ее изменения при движениях. Сов. учёный В. М. Бехтерев показал роль подкорковых структур в формировании эмоциональных и двигательных реакций животных и человека, открыл проводящие пути спинного и головного мозга, функции зрительных бугров и т.д. Сов. учёный А. А. Ухтомский сформулировал учение о доминантекак о ведущем принципе работы головного мозга; это учение существенно дополнило представления о жёсткой детерминации рефлекторных актов и их мозговых центров. Ухтомский установил, что возбуждение мозга, вызванное доминирующей потребностью, не только подавляет менее значимые рефлекторные акты, но и приводит к тому, что они усиливают доминирующую деятельность.
Значительными достижениями обогатило Ф. физическое направление исследований. Применение струнного гальванометра голландским учёным В. Эйнтховеном, а затем советским исследователем А. Ф. Самойловымдало возможность зарегистрировать биоэлектрические потенциалы сердца. С помощью электронных усилителей, позволивших в сотни тысяч раз усиливать слабые биопотенциалы, американский учёный Г. Гассер, английский – Э. Эдриан и рус.(русский) физиолог Д. С. Воронцов зарегистрировали биопотенциалы нервных стволов (см. Биоэлектрические потенциалы). Регистрация электрических проявлений деятельности головного мозга – электроэнцефалография – впервые осуществлена рус.(русский) физиологом В. В. Правдич-Неминским и продолжена и развита нем.(немецкий) исследователем Г. Бергером. Советский физиолог М. Н. Ливанов применил математические методы для анализа биоэлектрических потенциалов коры головного мозга. Английский физиолог А. Хилл зарегистрировал теплообразование в нерве при прохождении волны возбуждения.
В 20 в. начались исследования процесса нервного возбуждения методами физической химии. Ионная теория возбуждения была предложена рус.(русский) учёным В. Ю. Чаговцем, затем развита в трудах нем.(немецкий) учёных Ю. Бернштейна, В. Нернста и рус.(русский) исследователя П. П. Лазарева. В работах английских учёных П. Бойла, Э. Конуэя и А. Ходжкина, А. Хаксли и Б. Каца получила глубокое развитие мембранная теория возбуждения. Советский цитофизиолог Д. Н. Насонов установил роль клеточных белков в процессах возбуждения. С исследованиями процесса возбуждения тесно связано развитие учения о медиаторах, т. е. химических передатчиках нервного импульса в нервных окончаниях (австр. фармаколог О. Лёви, Самойлов, И. П. Разенков, А. В. Кибяков, К. М. Быков, Л. С. Штерн, Е. Б. Бабский, Х. С. Коштоянц в СССР; У. Кеннонв США; Б. Минц во Франции и др.). Развивая представления об интегративной деятельности нервной системы, австралийский физиолог Дж. Эклс подробно разработал учение о мембранных механизмах синаптической передачи.
В середине 20 в. американский учёный Х. Мэгоуни итальянский – Дж. Моруцци открыли неспецифические активирующие и тормозные влияния ретикулярной формации на различные отделы мозга. В связи с этими исследованиями значительно изменились классические представления о характере распространения возбуждений по центральной нервной системе, о механизмах корково-подкорковых взаимоотношений, сна и бодрствования, наркоза, эмоций и мотиваций. Развивая эти представления, советский физиолог П. К. Анохин сформулировал понятие о специфическом характере восходящих активирующих влияний подкорковых образований на кору мозга при реакциях различного биологического качества. Детально изучены функции лимбической системымозга (амер. учёный П. Мак-Лейн, сов.(советский) физиолог И. С. Бериташвили и др.), выявлено её участие в регуляции вегетативных процессов, в формировании эмоций и мотиваций, процессов памяти, изучаются физиологические механизмы эмоций (амер. исследователи Ф. Бард, П. Мак-Лейн, Д. Линдели, Дж. Олдс; итал.(итальянский) – А. Цанкетти; швейцарский – Р. Хесс, Р. Хунспергер; советский – Бериташвили, Анохин, А. В. Вальдман, Н. П. Бехтерева, П. В. Симонов и др.). Исследования механизмов сна получили значительное развитие в работах Павлова, Хесса, Моруцци, франц.(французский) исследователя Жуве, сов.(советский) исследователей Ф. П. Майорова, Н. А. Рожанского, Анохина, Н. И. Гращенковаи др.
В начале 20 в. сложилось новое учение о деятельности желёз внутренней секреции – эндокринология. Были выяснены основные нарушения физиологических функций при поражениях желёз внутренней секреции. Сформулированы представления о внутренней среде организма, единой нейро-гуморальной регуляции, гомеостазе, барьерных функциях организма (работы Кеннона, сов.(советский) учёных Л. А. Орбели, Быкова, Штерн, Г. Н. Кассиля и др.). Исследованиями Орбели и его учеников (А. В. Тонких, А. Г. Гинецинского и др.) адаптационно-трофической функции симпатической нервной системы и её влияния на скелетную мускулатуру, органы чувств и центральную нервную систему, а также школой А. Д. Сперанского – влияние нервной системы на течение патологических процессов – было развито представление Павлова о трофической функции нервной системы. Быков, его ученики и последователи (В. Н. Черниговский, И. А. Булыгин, А. Д. Слоним, И. Т. Курцин, Э. Ш. Айрапетьянц, А. В. Риккль, А. В. Соловьев и др.) развили учение о кортико-висцеральной физиологии и патологии. Исследованиями Быкова показана роль условных рефлексов в регуляции функций внутренних органов.
В середине 20 в. значительных успехов достигла Ф. питания. Были изучены энерготраты людей различных профессий и разработаны научно обоснованные нормы питания (сов. учёные М. Н. Шатерников, О. П. Молчанова, нем.(немецкий) исследователь К. Фойт, амер.(американский) физиолог Ф. Бенедикт и др.). В связи с космическими полётами и исследованиями водного пространства развиваются космическая и подводная Ф. Во 2-й п