Электрофизиология
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Электрофизиология

Электрофизиология, раздел физиологии, изучающий различные электрические явления в живых тканях организма (биоэлектрические потенциалы), а также механизм действия на них электрического тока. Первые научные сведения о «животном электричестве» были получены в 1791 Л. Гальвани. Он обнаружил, что замыкание металлическим проводником оголённых нерва и мышцы лягушки сопровождается сокращением последней, и истолковал этот факт как результат действия возникающего в живой ткани электричества. Этот опыт вызвал возражения А. Вольты, который указал, что раздражение мышцы может быть связано с появлением электричества в состоящей из разнородных металлов внешней цепи. Гальвани воспроизвёл также сокращение мышцы без участия металлического проводника (путём прикосновения поврежденного участка нерва к мышце) и с несомненностью показал, что источником электричества является живая ткань. В 1797 опыты Гальвани подтвердил немецкий учёный А. Гумбольдт. Итальянский физиолог К. Маттеуччи в 1837 доказал наличие разности электрических потенциалов между поврежденной и неповрежденной частями мышцы. Он обнаружил также, что мышца при её сокращении создаёт электрический ток, достаточный для раздражения другого нервно-мышечного соединения. Э. Дюбуа-Реймон при помощи более совершенной методики в 1848 подтвердил, что повреждение мышцы или нерва всегда сопровождается появлением разности потенциалов, уменьшающейся при возбуждении. Тем самым был открыт потенциал действия («отрицательное колебание», по терминологии того времени) — один из основных видов электрических процессов в возбудимых тканях. Дальнейшее развитие Э. было предопределено созданием технических средств для регистрации слабых и кратковременных электрических колебаний. В 1888 немецкий физиолог Ю. Бернштейн предложил т. н. дифференциальный реотом для изучения токов действия в живых тканях, которым определил скрытый период, время нарастания и спада потенциала действия, После изобретения капиллярного электрометра, применяемого для измерения малых эдс(электродвижущая сила), такие исследования были повторены более точно французским учёным Э. Ж. Мареем (1875) на сердце и А. Ф. Самойловым (1908) на скелетной мышце. Н. Е. Введенский (1884) применил телефон для прослушивания потенциалов действия. Важную роль в развитии Э. сыграл советский физиолог В. Ю. Чаговец, впервые применивший в 1896 теорию электролитической диссоциации для объяснения механизма появления электрических потенциалов в живых тканях. Бернштейн сформулировал в 1902 основные положения мембранной теории возбуждения, развитые позднее английскими учёными П. Бойлом и Э. Конуэем (1941), А. Ходжкином, Б. Кацем и А. Хаксли (1949). В начале 20 в. для электрофизиологических исследований был использован струнный гальванометр, позволивший в значительной мере преодолеть инерционность др. регистрирующих приборов; с его помощью В. Эйнтховен и Самойлов получили подробные характеристики электрических процессов в различных живых тканях. Неискажённая регистрация любых форм биоэлектрических потенциалов стала возможной лишь с введением в практику Э. (30—40-е гг.20 в.) электронных усилителей и осциллографов (Г. Бишоп, Дж. Эрлангер и Г. Гассер, США), составляющих основу электрофизиологической техники. Использование электронной техники позволило осуществить отведение электрических потенциалов не только от поверхности живых тканей, но и из глубины при помощи погружаемых электродов (регистрация электрической активности отдельных клеток и внутриклеточное отведение). Позднее в Э. стала широко использоваться также электронно-вычислительная техника, позволяющая выделять очень слабые электрические сигналы на фоне шумов, проводить автоматическую статистическую обработку большого количества электрофизиологических данных, моделировать электрофизиологические процессы и т. д. Значительный вклад в развитие Э. внесли также русские и советские физиологи — И. Г. Тарханов, Б. Ф. Вериго, В. Я. Данилевский, Д. С. Воронцов, А. Б. Коган, П. Г. Костюк, М. Н. Ливанов и др. Электрофизиологический метод регистрации электрических потенциалов, возникающих во время активных физиологических функций во всех без исключения живых тканях, — наиболее удобный и точный метод исследования этих процессов, измерения их временных характеристик и пространственного распределения, т. к. электрические потенциалы лежат в основе механизма генерации таких процессов, как возбуждение, торможение, секреция. Вместе с тем электрический ток — наиболее универсальный раздражитель для живых структур; химические, механические и другие раздражители при действии на ткани также трансформируются на клеточных мембранах в электрические изменения. Поэтому электрофизиологические методы широко используются во всех разделах физиологии для вызова и регистрации деятельности различных органов и систем. Соответственно они широко применяются также в патофизиологических исследованиях и в клинической практике для определения функциональных нарушений жизненных функций. Диагностическое значение приобрели различные электрофизиологические методы — электрокардиография, электроэнцефалография, электромиография. Электроретинография, электродермография (регистрация изменений электрических потенциалов кожи) и др. Основные проблемы современной Э.: изучение физико-химических процессов на клеточной мембране, приводящих к появлению электрических потенциалов, и их изменение во время активных физиологических процессов (см. Биоэлектрические потенциалы, Возбуждение, Торможение, Импульс нервный), а также биохимических процессов, поставляющих энергию для переноса ионов через мембрану и создания ионных градиентов — основы генерации таких потенциалов; исследование молекулярной структуры мембранных каналов, которые избирательно пропускают через мембрану те или иные ионы и тем самым создают различные формы активных клеточных реакций; моделирование биоэлектрических явлений на искусственных мембранах. См. также ст. Физиология.

  Лит.: Гальвани А., Вольта А., Избранные работы о животном электричестве, М. — Л., 1937; Брейзье М., Электрическая активность нервной системы, пер.(перевод) с англ.(английский), М., 1955; Веритов И. О., Общая физиология мышечной и нервной системы, 3 изд., т. 1—2, М., 1959—66; Воронцов Д. С., Общая электрофизиология, М., 1961; Ходжкин А., Нервный импульс, пер.(перевод) с англ.(английский), М., 1965; Катц Б., Нерв, мышца и синапс, пер.(перевод) с англ.(английский), М., 1968; Ходоров Б. И., Общая физиология возбудимых мембран, М., 1975 (Руководство по физиологии); Костюк П. Г., Физиология центральной нервной системы, 2 изд., К., 1977; Erianger J., Gasser H. S., Electrical signs of nervous activity, Phil, 1937; Schaefer H., Elektrophy-siologie, Bd 1—2, W., 1940—42; Hubbard J., Llinas R., Quastel D., Electrophysiological analysis of synaptic transmission, L., 1969

  П. Г. Костюк.