Эйлера уравнение
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Эйлера уравнение

Эйлера уравнение,

  1) дифференциальное уравнение вида

загрузка...

, (*)

где ao,..., anпостоянные числа; при х>0 уравнение (*) подстановкой х = et сводится к линейному дифференциальному уравнению с постоянными коэффициентами. Изучалось Л. Эйлером с 1740. К уравнению (*) сводится подстановкой x' = ax + b уравнение

.

  2) Дифференциальное уравнение вида

,

где X (x) = a0x4 + a1x3 + a2x2 + a3x + a4, Y (y) = а0у41у32у23у +a4. Л. Эйлер рассматривал это уравнение в ряде работ начиная с 1753. Он показал, что общее решение этого уравнения имеет вид F (х, у) = 0, где F (х, у) симметричный многочлен четвёртой степени от х и у. Этот результат Эйлера послужил основой теории эллиптических интегралов.

  3) Дифференциальное уравнение вида

'

служащее в вариационном исчислении для разыскания экстремалей интеграла

.

  Выведено Л. Эйлером в 1744.