Печень
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Печень

Печень, крупная железа животного организма, участвующая в процессах пищеварения, обмена веществ, кровообращения и осуществляющая специфические защитные и обезвреживающие, ферментативные и выделительные функции, направленные на поддержание постоянства внутренней среды организма.

  Сравнительная морфология. У беспозвоночных П. — пищеварительная железа, представляющая собой вырост средней кишки, принимает участие в переваривании и всасывании пищи; в ней откладываются запасные питательные вещества, жиры и углеводы. У многих беспозвоночных П. часто называется печёночно-поджелудочной железой (hepato-pancreas). У большинства моллюсков П. массивная, дольчатая, обычно парная; открывается в желудок 1—2 или многими протоками; клетки П. моллюсков способны к фагоцитозу. Среди членистоногих П. имеют ракообразные, мечехвосты и большинство паукообразных. П. ракообразных — мешковидные выросты переднего отдела средней кишки; вырабатывает фермент, расщепляющий клетчатку. У паукообразных П. представлена парными выростами брюшного отдела средней кишки. Среди иглокожих большие печёночные выросты желудка имеются только у морских лилий и звёзд.

  У хордовых животных и у человека П.— орган, в котором вырабатывается секрет, участвующий в пищеварении (жёлчь), и осуществляются важнейшие процессы, связанные с обменом веществ в организме. П. оболочников — обычно древовидно ветвящаяся железа; образуется как вырост желудка, тесно прилегает к его стенке и открывается в него одним протоком. У ланцетника П. представлена мешковидным печёночным выростом кишечника.

  У позвоночных П. закладывается как брюшной вырост средней кишки, который, древовидно разветвляясь, приобретает строение трубчатой железы. Просветы конечных трубочек П. образуют жёлчные капилляры, по которым жёлчь стекает в более крупные печёночные протоки; отдельные печёночные протоки обычно объединяются в общий жёлчный проток, открывающийся в двенадцатиперстную кишку. Обычно из части жёлчного протока образуется жёлчный пузырь. Трубчатое строение П. сохраняется в течение всей жизни только у некоторых круглоротых (миксин). У миног, а также у рыб и земноводных трубчатое строение П. частично нарушается, так как между трубочками П. возникают поперечные перекладины — анастомозы и между ними врастает соединительная ткань с кровеносными сосудами и нервами. У пресмыкающихся, птиц и млекопитающих обильные анастомозы преобразуют трубчатую железу в сетчатую. У миног и у некоторых рыб П.— нерасчленённый орган, однако у большинства животных в ней имеются правая и левая лопасти (жёлчный пузырь всегда связан с правой лопастью). У некоторых животных (особенно среди млекопитающих) обе лопасти могут быть дольчатыми. У хищников П. относительно крупнее, чем у травоядных. У рыб и земноводных П.—крупнее, чем у пресмыкающихся, птиц и млекопитающих. Форма П. зависит от формы тела животного. У некоторых земноводных, рыб и млекопитающих П. тесно связана с поджелудочной железой, протоки которой открываются в жёлчный проток.

  У человека П.— самая крупная пищеварительная железа. Развивается на 3-й неделе внутриутробной жизни плода из выроста эпителия слизистой оболочки двенадцатиперстной кишки. У взрослого человека П. весит 1,5—2 кг (около 1/50   массы тела), имеет плотную консистенцию, но меняет форму и размеры как от воздействия со стороны окружающих органов, так и от функциональных нагрузок. Сверху к П. прилежит диафрагма (см. Грудобрюшная преграда), над которой расположены сердце и лёгкие; снизу — желудок, двенадцатиперстная кишка, часть поперечной ободочной кишки, правая почка с надпочечником; сзади — пищевод и позвоночный столб; спереди — передняя стенка брюшной полости. На П. различают передневерхнюю, или диафрагмальную, и висцеральную (нижнюю) поверхности и края: передний — острый, задний — тупой. Передневерхняя выпуклая поверхность П. делится серповидной связкой на 2 доли — правую, большую, и левую, меньшую (рис. 1). Нижняя поверхность П. несколько вогнута. На ней различают правую и левую продольные борозды и поперечную (называют воротами П.), которые делят П. на 4 доли: собственно правую, левую, хвостатую, квадратную (рис. 2). В правой продольной борозде спереди лежит жёлчный пузырь, сзади — нижняя полая вена; в левой — спереди круглая связка П. (заросшая пупочная вена), сзади — венозная связка (заросшее соединение пупочной вены с нижней полой веной). В ворота П. входят воротная вена, печёночная артерия, нервы; выходят — лимфатические сосуды и печёночный проток, который, соединяясь с протоком жёлчного пузыря, образует жёлчевыносящий проток, впадающий в двенадцатиперстную кишку. П. покрыта серозной оболочкой (брюшиной), за исключением участка, где она прилежит к диафрагмой срастается с ней. Серозная оболочка, переходя с П. на соседние органы, образует связки: серповидную, правую и левую венечные, соединяющие П. с диафрагмой, а также идущие от ворот П. печёночно-желудочную и др. Связки играют роль в удержании П. на месте. Однако большее значение в фиксации П. имеют: внутрибрюшное давление, обусловливающее более или менее плотное прилегание органов брюшной полости друг к другу и их взаимную опору; нижняя полая вена, плотно врастающая своими притоками (печёночными венами) в вещество П.; сила сцепления между серозными оболочками П. и диафрагмы в местах их соприкосновения; соединительная ткань, связывающая П. с диафрагмой в местах, не покрытых брюшиной. П. расположена основной массой в правом подреберье и через надчревную область простирается в левое подреберье. Нижняя граница П. в норме справа не выходит у взрослого человека из-под края правой рёберной дуги. У новорождённых П. занимает весь верхний отдел брюшной полости и левой долей касается селезёнки; нижний край П. нередко доходит до пупка, у грудного ребёнка он выступает на 2—3 см из-под рёберного края и только к 4 годам скрывается за ним.

  П. — сложная трубчатая железа. Под её серозной оболочкой располагается соединительнотканная (глиссонова) капсула, содержащая эластические волокна; в воротах П. капсула утолщается и вместе с кровеносными сосудами проникает внутрь П., разделяя её на призматические печёночные дольки размером 0,5—2,0 мм (см. илл.). В середине каждой дольки проходит центральная вена, от которой по радиусам в виде перекладин (балок), называется печёночными пластинками, располагаются печёночные клетки. Печёночные пластинки в совокупности составляют железистую паренхиму П. Дольки П. состоят из тонких, но широких пластинок, анастомозирующих между собой и состоящих из одного слоя печёночных клеток. Между ними располагаются жёлчные капилляры, которые, сливаясь, образуют внутри- и междольковые жёлчные протоки, составляющие печёночный проток.

  Кровоснабжение П. осуществляется по печёночной артерии, приносящей артериальную кровь, богатую кислородом, и воротной вене (см. Воротные системы). Кровь, поступающая в П. по воротной вене от желудка, селезёнки, кишечника, поджелудочной железы и др. органов брюшной полости, содержит некоторые продукты переваривания белков, углеводов и частично жиров, различные химические вещества, обеспечивающие физиологические функции П. Конечные ветви печёночной артерии и воротной вены внутри долек переходят в синусоиды, скорость кровотока в которых сравнительно низка. Здесь происходит обмен между кровью и клетками П., после чего кровь поступает в центральные вены, которые соединяются и в виде 3—4 печёночных вен впадают в нижнюю полую вену. Разветвленная капиллярная сеть, поверхность которой достигает 400 м; обеспечивает прохождение через П. около 2 тыс. л крови в сутки, причём 80% её поступает по системе воротной вены, а 20% — через печёночную артерию. Внутридольковые капилляры (синусоиды) в П., в отличие от обычных капилляров, снабжены, кроме эндотелия, ретикулярными клетками звездчатой формы (см. Купфера клетки), которые относятся к ретикуло-эндотелиальной системе и обладают выраженной способностью к фагоцитозу. Иннервируется П. блуждающими нервами и ветвями солнечного сплетения.

  Физиология и биохимия. Физиологическое значение П. определяется тем, что всасываемые из кишечника в кровь вещества проходят через П. и подвергаются в ней химическим изменениям. П. участвует в поддержании динамического равновесия многих веществ плазмы крови (сахара, холестерина, белков крови, железа, ретинола, или витамина А, воды). Через П. протекает в 1 мин около 1,5 л крови, в ней освобождается 1/7 часть всей энергии организма. Температура оттекающей от неё крови во время пищеварения увеличивается на 1—2 °С. П. инактивирует многие гормоны: тироксин, эстрогены, гонадотропные гормоны, стероиды коры надпочечников, серотонин и др. Некоторые вещества, пройдя через П., приобретают большую токсичность, например алкалоид колхицин превращается в более ядовитое вещество — оксиколхицин; сульфаниламиды после ацетилирования в П. становятся менее растворимыми, вследствие чего осаждаются в мочевых путях. П. обладает жёлчеобразовательной функцией. Жёлчь, синтезируемая в клетках П. из веществ, поступающих с кровью, имеет важное значение для процессов пищеварения и жирового обмена в организме. Не менее важная функция П.— депонирование крови (см. Депо крови). Сосуды П. могут вмещать 20% всей крови, поэтому задержка крови в нормальной здоровой П. не представляет собой венозного застоя. От её функционального состояния зависит деятельность др. депонирующих кровь органов (селезёнки, кишечника). Вся кровь, вышедшая из селезёнки и кишечника, обязательно проходит через П. Здесь удаляется избыток воды из крови, который идёт на создание лимфы и жёлчи. В П. образуется от 1/3 до 1/2 всей лимфы с большим содержанием белка (6%).

  В состав П. входят: вода (70—75%), простые и сложные белки (12—24%) и продукты их распада, липиды (2—6%), углеводы (2—8%) и продукты их расщепления, коферменты, витамины, гормоны, разнообразные низкомолекулярные органические вещества и минеральные катионы и анионы. П. выполняет весьма важные функции. В ней проходят процессы биосинтеза важнейших для организма соединений — нуклеиновых кислот (ДНК и РНК(рибонуклеиновая кислота)), различных ди- и мононуклеотидов, пуриновых и пиримидиновых оснований. В то же время ферменты, содержащиеся в П., вызывают расщепление нуклеиновых кислот и нуклеотидов, дезаминирование и окисление свободных пуриновых оснований. П. участвует в той или иной степени в обмене белков, углеводов, липидов, витаминов, минеральных веществ и воды. Продукты расщепления всех питательных веществ образуют в П. основной «метаболический фонд», из которого организм черпает по мере надобности необходимые для него вещества.

  Белковый обмен. Из 80—100 г белка, расщепляемого и вновь синтезируемого в организме человека за сутки, примерно половина приходится на П. Белки в П. обновляются за 7 суток, а в др. органах — за 17 и более. Это свидетельствует об интенсивности белкового обмена в П. В ней происходит синтез белков, начиная с активации аминокислот в гиалоплазме, образования соединений со специфическими для каждой аминокислоты транспортными РНК(рибонуклеиновая кислота) и кончая завершающей стадией синтеза — высвобождением длинных пептидных цепей готовых белков из места их синтеза в рибосомах. В П. образуются не только белки, характерные для неё самой, но и белки плазмы крови — альбумины, многие глобулины, а также фибриноген и др. факторы, участвующие в процессе свёртывания крови. Под влиянием катептических протеаз и пептидаз (см. Катепсины.) в П. происходит расщепление белков и образование аминокислот, которые подвергаются в ней различным превращениям: дезаминированию (практически происходит только в П.), переаминированию, декарбоксилированию, приводящему к возникновению биогенных аминов; в результате переноса метильной группы от аденозилметионина обеспечивается образование холина, креатина, адреналина и др. метилированных соединений. Своеобразны и характерны пути превращения в П. отдельных аминокислот — триптофана, фенилаланина, гистидина, лизина и др. Из триптофана, в частности, синтезируются такие биологически активные вещества, как триптамин, окситриптофан и продукт его декарбоксилирования — серотонин, хинолиновая кислота и оба продукта её декарбоксилирования — никотиновая и пиколиновая кислоты; из гистидина образуются формиминоглутаминовая и глутаминовая кислоты, а также гистамин; из аргинина образуются орнитин и мочевина. Орнитин вступает в характерный цикл реакций, приводящих к синтезу конечного продукта обмена простых белков — мочевины (из углекислого газа и аммиака при участии ионов магния, АТФ и ряда аминокислот — см.(смотри) Орнитиновый цикл). В П. происходят синтезы, нейтрализующие токсические продукты обмена веществ, такие, как фенолы, ароматические углеводороды и многие др. с образованием гиппуровой и фенацетуровой кислот (при использовании глицина), а также парных глюкуроновых эфиросерных кислот, меркаптокислот и др. соединений.

  Углеводный обмен. П. поддерживает концентрацию сахара в крови на таком уровне, который обеспечивает непрерывное снабжение глюкозой всех тканей. Это достигается регуляцией соотношения между синтезом и распадом гликогена, депонируемого в П. (см. Кори цикл). В среднем П. человека содержит 30—100 г гликогена. Этого количества достаточно, чтобы служить резервуаром для регуляции уровня сахара в крови. При всасывании сахара из кишечника содержание глюкозы в крови воротной вены может повышаться до 400 мг%, а в периферической крови её содержится не более 200 мг% Глюкоза превращается в П. в гликоген и депонируется, а также используется для получения энергии. Если после этого и др. синтезов ещё имеется избыток глюкозы, она превращается в жир. При голодании П. поддерживает постоянный уровень сахара в крови прежде всего расщеплением гликогена; если этого недостаточно — гликонеогенезом (превращением гликогенных аминокислот и глицерина в сахар). Инсулин, образующийся во внутрисекреторных отделах поджелудочной железы, проходя через П., также оказывает влияние на уровень сахара в крови и на образование и распад гликогена в П. Под влиянием фосфорилазы концевые глюкозные остатки гликогена отщепляются с образованием глюкозо-1-фосфата, участвующего в образовании уридиндифосфатглюкозы — транспортной формы глюкозных остатков и основного их источника при синтезе гликогена. Нарушение ферментативного превращения галактозо-1-фосфата в глюкозо-1-фосфат приводит к тяжёлым патологическим явлениям, связанным с наследственной болезнью — галактоземией. Обычный путь превращения глюкозо-1-фосфата (образование из него глюкозо-6-фосфата) имеет большое биологическое значение, так как это соединение играет центральную роль в превращениях углеводов и саморегуляции углеводного обмена. В П. глюкозо-6-фосфат резко тормозит фосфоролитическое расщепление гликогена, активирует ферментативный транспорт глюкозы с уридинфосфоглюкозы на молекулу строящегося гликогена, является субстратом для окислительного превращения глюкозы по пентозофосфатному пути. При окислении глюкозо-6-фосфата образуется восстановленная форма никотинамидадениндинуклеотидфосфата (НАДФ) — необходимого кофермента восстановительных синтезов жирных кислот и холестерина и превращения глюкозо-6-фосфата в фосфопентозы — обязательный компонент при образовании нуклеотидов и нуклеиновых кислот. Кроме того, глюкозо-6-фосфат — субстрат для дальнейших гликолитических превращений, приводящих через фруктозомоно- и дифосфаты к фосфотриозам и образованию пировиноградной и молочной кислот. Этот процесс обеспечивает организм соединениями, необходимыми для биосинтезов, и играет существенную роль в обмене энергии, так как образование каждой молекулы молочной кислоты равноценно синтезу одной богатой энергией фосфатной связи в молекуле АТФ. Наконец, расщепление глюкозо-6-фосфата фосфатазой обеспечивает поступление в кровь свободной глюкозы, доставляемой током крови во все органы и ткани.

  Жировой обмен. П. в состоянии депонировать значительно больше липидов, чем гликогена (до 20—30% сухой массы). Часть липидов, состоящая из фосфатидов и холестерина, довольно постоянна и составляет 10—15%; содержание нейтрального жира колеблется. Депонирование жира — функция жировой ткани, а не П. В целом П. не играет в липидном отмене такой жизненно важной роли, как в углеводном и белковом обменах. Расщепление жирных кислот также не ограничивается П. В П. происходят деградация жира и окисление жирных кислот, а также представлены ферментные системы биосинтеза высокомолекулярных жирных кислот, нейтрального жира и сложных липидов; промежуточный продукт при этих синтезах — фосфатидная кислота. В П. синтезируется также холестерин. Образующиеся при деградации жира жирные кислоты окисляются с образованием ацетилкофермента A, вступающего при наличии конденсирующего фермента в реакцию со щавелевоуксусной кислотой и образующего таким образом лимонную кислоту — основной субстрат окислительных превращений в трикарбоновых кислот цикле. В клетках П., как и в клетках др. органов, окислительного превращения, локализованные по преимуществу в митохондриях, сопряжены с образованием богатых энергией соединений (АТФ) и заканчиваются образованием CO2 и H2O. Синтез высокомолекулярных жирных кислот протекает вне митохондрий — в так называемом цитозоле и, следовательно, пространственно отделен от места их окисления. В так называемой микросомальной фракции П. сосредоточена 2-я (не митохондриальная) НАДФ-зависимая система окисления углеводородов, стероидов, холестерина. Эта система локализована в эндоплазматическом ретикулуме и связана с образованием продуктов гидроксилирования. П. имеет существенное значение в об мене пигментов: в ней разрушается гемоглобин, образуется билирубин и превращается в растворимую форму в виде диглюкуронида билирубина. Пигментный обмен в П., тесно связанный с метаболизмом билирубина и порфиринов, в свою очередь, играет важную роль в обмене железа в организме.

  В минеральном обмене и в сохранении постоянства кислотно-щелочного равновесия П. принимает непосредственное участие. Минеральные вещества в П. находятся как в свободном виде, так и входят в состав сложных органических соединений, например ферментов (Mg, Mn, Fe, Cu, Zn). Катионы выполняют также роль активаторов ферментов, например Na+, Ca2+, К+, Ni2-, Co2+, Cr3+ и др. В составе П. находятся железосодержащий белок ферритин и медьсодержащий белок гепатокупреин; эти вещества участвуют в процессе кроветворения. П. также участвует в обмене витаминов. В ней содержатся витамины группы В и D, витамин C и растворимые в жирах витамины E и K. Из каротинов в П. образуется и депонируется витамин A, всасывание которого из кишечника происходит только в присутствии жёлчи. Аскорбиновая кислота способствует гликогенезу в П. Витамин К необходим для синтеза протромбина в ней.

  Функции П. (процессы обмена веществ, протекающие в ней, жёлчеобразование) регулируются нервными и гормональными механизмами. В гормональной регуляции участвуют адреналин, инсулин, глюкагон, кортикостероиды, гормоны, вырабатываемые в гипофизе, интестинальные гормоны, особенно секретин, холецистокинин, панкреозимин. Влияние многих гормональных факторов реализуется в П. при участии циклических мононуклеотидов: циклического аденозинмонофосфата (цАМФ) и гуанозинмонофосфата (цГМФ). Эти циклические мононуклеотиды образуются при расщеплении циклазой (ферментом, фиксированным главным образом в плазматической мембране) нуклеозидтрифосфатов АТФ и ГТф. Циклические мононуклеотиды выполняют функции регуляторов активности многих ферментов в результате активации протеинкиназ, обеспечивающих процесс переноса фосфатного остатка с АТФ на белки-ферменты. Фосфорилирование ферментов меняет их активность, повышая её у одних (фосфорилазы, липазы) и подавляя у других (гликоген-синтетазы, пируватдекарбоксилазы).

  В свою очередь, биохимические процессы, протекающие в П., через тканевые интероцепторы оказывают влияние на функциональное состояние центральной нервной системы. Разнообразие и взаимозависимость факторов, влияющих на состояние клеток П., обусловливают как интенсивность, так и направленность протекающих в ней процессов обмена веществ.

  При заболеваниях П. у человека и животных поражается преимущественно её паренхима (клетки) или межуточная ткань. Острые гепатиты составляют значительную часть всех болезней П. и могут быть причиной развития хронических её поражений. Среди гепатитов инфекционной природы различают первичные (см. Гепатит вирусный) и вторичные (например, при бруцеллёзе, лептоспирозе, сифилисе и др.). Токсико-аллергические гепатиты развиваются при воздействии на организм химических, в том числе лекарственных веществ (см. Аллергия). Исходом болезни может быть цирроз печени. В результате нарушения питания и обмена веществ (при алкоголизме, витаминной недостаточности, патологическом голодании, диабете сахарном, гепато-церебральной дистрофии, ожирении и т.д.), а также при нарушениях кровообращения, особенно при повышении давления в нижней полой и печёночной венах, в П. развиваются дистрофические изменения. П. человека и животных может быть местом обитания многих паразитов: простейших, гельминтов, реже членистоногих. Так, из кишечника в жёлчные пути могут проникать лямблии, лейшмании (см. Лямблиоз, Лейшманиоз); в П. человека происходит внеэритроцитарное развитие возбудителя малярии. В протоках П. и желчном пузыре паразитируют различные трематоды, вызывающие холангиты, холециститы (см. Дикроцелиоз, Клонорхоз, Описторхоз, Шистосоматозы, Фасциолёз). П. может быть местом развития возбудителей эхинококкоза. Из новообразований П. встречаются рак, саркома и др.

  Лит.: Догель В. А., Сравнительная анатомия беспозвоночных, ч. 1, Л., 1938; Шмальгаузен И. И., Основы сравнительной анатомии позвоночных животных, 4 изд., М., 1947; Павлов И. П., Лекции по физиологии, Полн. собр. соч.(сочинение), 2 изд., т. 5, М.— Л., 1952; Фишер А., Физиология и экспериментальная патология печени, пер.(перевод) с англ.(английский), Будапешт, 1961; Рапопорт С. М., Медицинская биохимия, пер.(перевод) с нем.(немецкий), М., 1966; Введение в клиническую биохимию (основы патобиохимии), Л., 1969: Бондарь З. А., Клиническая гепатология, М., 1970; Блюгер А. Ф., Райцис А. Б., Серотонин и печень, «Успехи гепатологии», в. 3, Рига, 1971; Збарский Б. И., Иванов И. И., Мардашев С. Р., Биологическая химия, 5 изд., Л., 1972.

  С. Е. Северин, А. Н. Дружинин, А. А. Гладышева.

1—3. Схемы строения печёночной дольки: 1 — жёлчные ходы; 2 — жёлчные капилляры; 3 — центральная вена; 4 — поддольковая (собирательная) вена; 5 — междольковый проход; 6 — междольковая артерия; 7 — междольковая вена; 8 — междольковые лимфатические капилляры; 9 — нервное сплетение вокруг сосуда; 10 — приток междольковых вен.

Рис. 1. Печень человека (вид спереди и сверху): 1 — диафрагма; 2 — венечная связка печени; 3 — левая треугольная связка; 4 — левая доля; 5 — серповидная связка; 6 — круглая связка; 7 — передний край; 8 — жёлчный пузырь; 9 — правая доля; 10 — правая треугольная связка.

Рис. 2. Печень человека (вид снизу): 1 — левая доля; 2 — хвостатая доля; 3 — нижняя полая вена; 4 — задняя поверхность; 5 — почечное вдавление; 6 — место перехода брюшины на печень; 7 — правая доля; 8 — вдавленне ободочной кишки; 9 — жёлчный пузырь; 10 — квадратная доля; 11 — круглая связка; 12 — пузырный проток; 13 — жёлчевыносящий проток; 14 — печёночный проток; 15 — воротная вена; 16 — печёночная артерия; 17 — венозная связка; 18 — желудочное вдавление.

Основные сегменты печени человека (вид спереди): I — передний, II — задний, III — медиальный, IV — латеральный; 1 — желчный пузырь; 2 — жёлчевыводящий проток; 3 — воротная вена; 4 — печёночная артерия.