Относительности теория, физическая теория, рассматривающая пространственно-временные свойства физических процессов. Закономерности, устанавливаемые О. т., являются общими для всех физических процессов, поэтому часто о них говорят просто как о свойствах пространства-времени. Как было установлено А. Эйнштейном, эти свойства зависят от гравитационных полей (полей тяготения), действующих в данной области пространства-времени. Свойства пространства-времени при наличии полей тяготения исследуются в общей теории относительности (ОТО), называются также теорией тяготения. В частной теории относительности рассматриваются свойства пространства-времени в приближении, в котором эффектами тяготения можно пренебречь. Логически частная О. т. есть частный случай ОТО, откуда и происходит её название. Исторически развитие теории происходило в обратном порядке; частная О. т. была сформулирована Эйнштейном в 1905, окончательная формулировка ОТО была дана им же в 1916. Ниже излагается частная О. т., называется в литературе также теорией относительности Эйнштейна, просто О. т., или специальной теорией относительности (история её возникновения изложена в последнем разделе).
Основные черты теории относительности
Явления, описываемые О. т. и называемые релятивистскими (от лат.(латинский) relatio — отношение), проявляются при скоростях движения тел, близких к скорости света в вакууме с = (2,997924562 ± 0,000000011) ´ 1010см/сек. При таких скоростях (называемых релятивистскими) зависимость энергии Е тела от его скорости v описывается уже не формулой классической механики Екин = mu2/2, а релятивистской формулой
(1)
Масса т, входящая в эту формулу, в О. т. называется также массой покоя. Из (1) видно, что энергия тела стремится к бесконечности при скорости u, стремящейся к с, поэтому если масса покоя не равна нулю, то скорость тела всегда меньше с, хотя при Е >> mc 2она может стать сколь угодно близкой к с. Это непосредственно наблюдается на ускорителях протонов и электронов, в которых частицам сообщаются энергии, много большие mc 2, и поэтому они движутся со скоростью, практически равной с. Со скоростью света всегда движутся частицы, масса покоя которых равна нулю (фотоны — кванты света, нейтрино). Скорость с является предельной скоростью передачи любых взаимодействий и сигналов из одной точки пространства в другую.
Существование предельной скорости вызывает необходимость глубокого изменения обычных пространственно-временных представлений, основанных на повседневном опыте. Рассмотрим следующий мысленный опыт. Пусть в вагоне, движущемся со скоростью u относительно полотна железной дороги, посылается световой сигнал в направлении движения. Скорость сигнала для наблюдателя в вагоне равна с. Если бы длины и времена, измеряемые любым наблюдателем, были одинаковы, то выполнялся бы закон сложения скоростей классической механики и для наблюдателя, стоящего у полотна, скорость сигнала была бы равна с + u, т. е. была бы больше предельной. Противоречие устраняется тем, что в действительности с точки зрения наблюдателя, относительно которого физическая система движется со скоростью u, все процессы в этой системе замедляются в раз (это явление называется замедлением времени), продольные (вдоль движения) размеры тел во столько же раз сокращаются и события, одновременные для одного наблюдателя, оказываются неодновременными для другого, движущегося относительно него (т. н. относительность одновременности). Учёт этих эффектов приводит к закону сложения скоростей, при котором предельная скорость оказывается одинаковой для всех наблюдателей.
Характерное для О. т. явление замедления времени может принимать огромные масштабы. В опытах на ускорителях и в космических лучах образуются распадающиеся (нестабильные) частицы, движущиеся со скоростью, близкой к скорости света. В результате замедления времени (с точки зрения земного наблюдателя) времена их распада и, следовательно, проходимые ими (от рождения до распада) расстояния увеличиваются в тысячи и десятки тысяч раз по сравнению с теми, которые частицы пролетали бы, если бы эффект замедления времени отсутствовал.
Из релятивистской формулы для энергии следует, что при малых скоростях (u << с) энергия тела равна
Второй член справа есть обычная кинетическая энергия, первый же член показывает, что покоящееся тело обладает запасом энергии Eo = mc 2, называющейся энергией покоя (т. н. принцип эквивалентности энергии и массы, или принцип эквивалентности Эйнштейна).
В ядерных реакциях и процессах превращений элементарных частиц значительная часть энергии покоя может переходить в кинетическую энергию частиц. Так, источником энергии, излучаемой Солнцем, является превращение четырёх протонов в ядро гелия; масса ядра гелия меньше массы четырёх протонов на 4,8×10–26г, поэтому при каждом таком превращении выделяется 4,3×1–5эрг кинетической энергии, уносимой излучением. За счёт излучения Солнце теряет в 1 сек 4×107т своей массы.
О. т. подтверждена обширной совокупностью фактов и лежит в основе всех современных теорий, рассматривающих явления при релятивистских скоростях. Уже последовательная теория электромагнитных, в частности оптических, явлений, описываемых классической электродинамикой (см. Максвелла уравнения), возможна только на основе О. т. Теория относительности лежит также в основе квантовой электродинамики, теорий сильного и слабого взаимодействий элементарных частиц. Законы движения тел при релятивистских скоростях рассматриваются в релятивистской механике, которая при скоростях u << с переходит в классическую механику Ньютона. Квантовые законы движения релятивистских микрочастиц рассматриваются в релятивистской квантовой механике и квантовой теории поля.
Принцип относительности и другие принципы инвариантности
В основе О. т. лежит принцип относительности, согласно которому в физической системе, приведённой в состояние свободного равномерного и прямолинейного движения относительно системы, условно называется «покоящейся», для наблюдателя, движущегося вместе с системой, все процессы происходят по тем же законам, что и в «покоящейся» системе. Говорят, что движущаяся система получается из «покоящейся» преобразованием движения и что принцип относительности выражает инвариантность (независимость) законов природы относительно преобразований движения.
Справедливость принципа относительности означает, что различие между состояниями покоя и равномерного прямолинейного движения не имеет физического содержания. Если физическая система В движется равномерно и прямолинейно (со скоростью V ) относительно системы А, то с тем же правом можно считать, что А движется относительно В (со скоростью V). Термин «принцип относительности» связан с тем, что если преобразованию движения подвергнуть систему движущихся тел, то все относительные движения этих тел останутся неизменными.
Наряду с принципом относительности из опыта известны и др. принципы инвариантности, или, как ещё говорят, симметрии, законов природы. Любой физический процесс происходит точно так же:
если осуществить его в любой др. точке пространства; эта симметрия выражает равноправие всех точек пространства, однородность пространства;
если систему, в которой происходит процесс, повернуть на произвольный угол; эта симметрия выражает равноправие всех направлений в пространстве, изотропию пространства;
если повторить процесс через некоторый промежуток времени; эта симметрия выражает однородность времени.
Т. о., имеет место инвариантность законов природы по отношению к четырём типам преобразований: 1) переносу в пространстве, 2) вращению в пространстве, 3) сдвигу во времени, 4) преобразованию движения. Симметрии 1—4 выполняются точно только в изолированной от внешних воздействий системе, т. е. если можно пренебречь воздействием на систему внешних факторов; для реальных систем они справедливы лишь приближённо.
Изучение свойств преобразований 1—2 составляет предмет евклидовой геометрии трёхмерного пространства, если рассматривать её как физическую теорию, описывающую пространственные свойства физических объектов (при этом под переносом следует понимать преобразование параллельного переноса).
При скоростях тел u, сравнимых со скоростью с, обнаруживается тесная связь и математическая аналогия между преобразованиями 1, 3 и 2, 4. Это даёт основание говорить об О. т., в которой все преобразования 1—4 следует рассматривать совместно, как о геометрии пространства-времени. Содержанием О. т. является рассмотрение свойств преобразований 1—4 и следствий из соответствующих принципов инвариантности. Математически О. т. является обобщением геометрии Евклида — геометрией четырёхмерного Минковского пространства.
Принцип относительности был известен (и справедлив) в классической механике, но свойства преобразований движения при u << c и при u ~ c различны; при u << с релятивистские эффекты исчезают и преобразования движения переходят в преобразования инвариантности, справедливые для классической механики (преобразования Галилея; см.(смотри) Галилея принцип относительности). Поэтому различают релятивистский принцип относительности, обычно называют принципом относительности Эйнштейна, и нерелятивистский принцип относительности Галилея.
Основное понятие О. т. — точечное событие, т.е. нечто, происходящее в данной точке пространства в данный момент времени (например, световая вспышка, распад элементарной частицы). Это понятие является абстракцией — реальные события всегда имеют некоторую протяжённость в пространстве и во времени и могут рассматриваться как точечные только приближённо. Любой физический процесс есть последовательность событий (С)—C1, C2,..., Сп,.... Справедливость симметрий 1—4 означает, что наряду с последовательностью (С) законы природы допускают существование бесконечного числа др. последовательностей (С *), которые получаются из (С) соответствующим преобразованием и различаются положением событий в пространстве и времени, но имеют одинаковую с (С) внутреннюю структуру. Например, в случае симметрии 4 процесс (С) можно наглядно описать как происходящий в стоящем на земле самолёте, а процесс (С *) — как такой же процесс, происходящий в самолёте, летящем с постоянной скоростью (относительно земли); различным скоростям и направлениям движения соответствуют различные последовательности (С *). Преобразования, переводящие одну последовательность событий в другую, называются активными (в отличие от пассивных преобразований, которые связывают координаты одного и того же события в двух системах отсчёта; см.(смотри) ниже). Совокупность этих преобразований должна удовлетворять определённым свойствам. Прежде всего последовательное применение любых двух преобразований должно представлять собой одно из возможных преобразований [например, переход от системы (1) к системе (2), а затем от системы (2) к системе (3) эквивалентен переходу (1)—(3)]. Кроме того, для каждого преобразования должно существовать обратное преобразование, так что последовательное применение обоих преобразований даёт тождественное (единичное) преобразование, являющееся одним из возможных преобразований системы. Это означает, что совокупность рассматриваемых преобразований (1—4) должна составлять группу в математическом смысле. Эта группа называется группой Пуанкаре (название предложено Ю. Вигнером). Преобразования группы Пуанкаре носят универсальный характер: они действуют одинаково на события любого типа. Это позволяет считать, что они описывают свойства пространства-времени, а не свойства конкретных процессов. Свойства преобразований Пуанкаре могут быть описаны различными способами (так же, как можно описывать различными способами свойства движений в трёхмерном пространстве); наиболее простое описание получается при использовании инерциальных систем отсчёта и связанных с ними часов. Роль инерционных систем отсчёта (и. с. о.) в О. т. такая же, как роль прямоугольных декартовых координат в геометрии Евклида.
Инерциальные системы отсчёта
С той степенью точности, с какой свойства данной области пространства-времени описываются частной О. т., можно ввести и. с. о., в которых описание пространственно-временных закономерностей О. т. принимает особенно простую форму. Под системой отсчёта в этом случае можно подразумевать жёсткую систему твёрдых тел (или её мысленное продолжение), по отношению к которой определяются положения событий, траектории тел и световых лучей. Любая система отсчёта, движущаяся относительно данной и. с. о. равномерно и прямолинейно без вращения, также будет инерциальной, а система отсчёта, вращающаяся или движущаяся ускоренно, уже не будет и. с. о. Следовательно, и. с. о. образуют выделенный класс систем отсчёта. В и. с. о. справедлив закон инерции, т. е. свободная (не испытывающая воздействий др. тел) частица движется в и. с. о. прямолинейно и (при принятой синхронизации часов; см.(смотри) ниже) равномерно. Требование выполнения закона инерции может быть принято как определение и. с. о. Первый закон Ньютона может рассматриваться при этом как утверждение о существовании таких систем отсчёта. Все и. с. о. равноправны; это равноправие является непосредственным выражением принципа относительности.
Степень инерциальности системы отсчёта зависит от свойств гравитационных полей, действующих в рассматриваемой области пространства-времени. Количественные критерии применимости частной О. т. и инерциальности систем отсчёта рассматриваются в ОТО.
В области пространства-времени, в которой справедлива частная О. т., можно пользоваться и неинерционными системами отсчёта (так же, как можно пользоваться криволинейными координатами в геометрии Евклида), но при этом описание свойств пространства-времени оказывается более сложным.
В данной и. с. о. необходимо определить способ измерения времени и координат. В и. с. о. трёхмерная пространственная геометрия — евклидова, если прямые определить, например, как траектории световых лучей, а расстояния измерять твёрдыми масштабами. Поэтому в данной и. с. о. можно ввести декартовы прямоугольные координаты х, у, z. Для определения времени t события можно принять, что в той точке, где оно произошло, находятся часы, покоящиеся в данной и. с. о. Если события происходят в разных точках A, В, то для сравнения их времён нужно синхронизировать часы в A и В, т.е. определить значение того, что часы в А и В показывают одинаковое время. Обычное определение таково: пусть в момент tA по часам в А посылается сигнал в В, а в момент его прибытия в В посылается такой же сигнал из В в A; если сигнал пришёл в А в момент t’A, то принимается, что сигнал пришёл в В в момент tB = (tA + t ’A)/2 и соответственно устанавливаются часы в В. При таком определении времена распространения сигнала из A в В и из В в А одинаковы и равны (t ’A – tA)/2. Сигналами могут служить световые вспышки, звуковые сигналы (если среда, в которой они распространяются, покоится по отношению к данной системе отсчёта), выстрелы из двух одинаковых орудий, установленных в A и В, и т.д., требуется лишь, чтобы условия передачи сигнала из А в В и из В в А были одинаковыми. Целесообразность такого определения времени связана с тем, что в любой и. с. о. отсутствует какое-либо физически выделенное направление; описанная процедура синхронизации часов симметрична относительно A и В и поэтому не вносит анизотропии в способ описания. Отсутствие выделенного направления проявляется в том, что синхронизация любыми сигналами приводит к одному и тому же результату; к такому же результату приводит медленный (с u << с) перенос часов из A в В. При практических измерениях времён и координат используются многочисленные косвенные методы, при условии, что они дают такой же результат, как и описанные выше процедуры. В любой другой и. с. о. координаты и время измеряются с помощью таких же масштабов и часов, синхронизируемых таким же способом. Заранее не очевидно, что времена, определённые таким образом в двух различных и. с. о., будут одними и теми же, и они действительно оказываются различными. После того как синхронизация произведена, могут измеряться скорости частиц и сигналов в данной и. с. о., в частности скорость распространения световых сигналов. Скорость света в любой и. с. о. всегда равна с.
Преобразования Лоренца
Рассмотренные выше активные преобразования непосредственно связаны с пассивными преобразованиями, описывающими связь между координатами и временем данного события в двух различных и. с. о. В силу принципа относительности безразлично, сообщить ли телу скорость V по отношению к данной и. с. о. L или перейти к системе отсчёта L¢, движущейся со скоростью V относительно L, — закон преобразования координат и времени должен быть одним и тем же.
Вследствие справедливости симметрий 1—4, преобразования, связывающие координаты и времена событий х, у, z, t и х’, у’, z’, t’, измеренные в двух и. с. о. L и L’, должны быть линейными. Из симметрий 1—4 и требования, чтобы преобразования составляли группу, можно получить вид этих преобразований. Если система отсчёта L’ движется относительно L со скоростью V, то при надлежащем выборе осей координат и начал отсчёта времени в L и L’ (оси х и х’ совпадают и направлены по V, оси у и у’, z и z’ соответственно параллельны, начала координат О и О’ совпадают при t = 0 и часы в L’ установлены так, что при t = 0 часы в О’ показывают время t’ = 0) преобразования координат и времени имеют вид:
, , , (2)
где с – произвольная постоянная, имеющая смысл предельной скорости движения (равной скорости света в вакууме). Эта постоянная может быть определена из любого эффекта О. т. (например, замедления времени распада быстрого p-мезона). Справедливость кинематики и динамики, основанных на преобразованиях (2), подтверждена неисчислимой совокупностью экспериментальных фактов.
Преобразования Лоренца (2) вместе с преобразованиями вращения вокруг начала координат образуют группу Лоренца; добавление к ней сдвигов во времени t’ = t + а и в пространстве х’ = х + b (где a, b произвольные постоянные размерности времени и длины) даёт группу Пуанкаре.
Из принципа относительности вытекает, что физические законы должны иметь одинаковую форму во всех и. с. о.; следовательно, они должны сохранять свой вид при преобразованиях Лоренца. Это требование называется принципом (постулатом) релятивистской инвариантности, или лоренц-инвариантности (лоренц-ковариантности), законов природы.
Из преобразований Лоренца вытекает релятивистский закон сложения скоростей. Если частица или сигнал движется в L по оси х со скоростью u, то в момент tx = ut и скорость частицы u’ = x’ / t’, измеряемая в системе L’, равна:
(3)
Эта формула отражает основную черту релятивистской кинематики — независимость скорости света от движения источника. Действительно, если скорость света, испущенного покоящимся в некоторой и. с. о. L источником, есть с, u = с, то из закона сложения скоростей (2) получаем, что измеренная в и. с. о. L’ скорость света u’ также равна с. Так как направление оси х произвольно, то отсюда следует независимость скорости света от движения источника. Это свойство скорости света однозначно определяет вид преобразований Лоренца: постулировав независимость скорости света от движения источника, однородность пространства и времени и изотропию пространства, можно вывести преобразования Лоренца.
Особая роль скорости света в О. т. связана с тем, что она является предельной скоростью распространения сигналов и движения частиц, достигаемой при энергии частицы, стремящейся к бесконечности, или массе, стремящейся к нулю; если бы масса покоя mg фотона оказалась хотя и очень малой, но отличной от нуля (экспериментально установлено, что m g< 4×10–21me, где me— масса электрона), то скорость света была бы меньше предельной. Чтобы предельная скорость вообще могла существовать, она не должна зависеть от движения источника частиц.
Из преобразований Лоренца легко получить основные эффекты О. т.: относительность одновременности, замедление времени, сокращение продольных размеров движущихся тел. Действительно, события 1, 2, одновременные в одной и. с. о. L: t 1 = t 2 и происходящие в разных точках x 1, x 2, оказываются неодновременными в другой и. с. о. L’ : . Далее, когда часы, покоящиеся в L в точке х = 0, показывают время t, то время t’ по часам в L’, пространственно совпадающим с часами в L в этот момент времени, есть
(4)
или
(4, а)
т. е. с точки зрения наблюдателя в L’ часы в L отстают. В силу принципа относительности отсюда следует, что с точки зрения наблюдателя в L’, все процессы в L замедлены в такое же число раз.
Легко получить также, что размеры l всех тел, покоящихся в L, оказываются при измерении в L’ сокращёнными в раз в направлении V:
(5)
В частности, продольный диаметр сферы, движущейся со скоростью u относительно L’, будет при измерении в L¢ в раз короче, чем поперечный. (Заметим, что это сокращение не обнаружилось бы на мгновенной фотографии сферы: из-за различного запаздывания световых сигналов, приходящих от разных точек сферы, её видимая форма остаётся прежней.)
Для и. с. о. пространственно-временные эффекты, определяемые преобразованиями Лоренца, относительны: с точки зрения наблюдателя в L замедляются все процессы и сокращаются все продольные масштабы в L’. Однако это утверждение несправедливо, если хотя бы одна из систем отсчёта неинерциальна. Если, например, часы 1 перемещаются относительно L из А в В со скоростью u, а потом из В в А со скоростью — u, то они отстанут по сравнению с покоящимися A часами 2 в раз; это можно обнаружить прямым сравнением, так что эффект абсолютен. Он должен иметь место для любого процесса; например, близнец, совершивший путешествие со скоростью u, вернётся в раз более молодым, чем его брат, остававшийся неподвижным в и. с. о. Это явление, получившее название «парадокса близнецов», в действительности не содержит парадокса: система отсчёта, связанная с часами 1, не является инерциальной, т.к. эти часы при повороте в В испытывают ускорение по отношению к инерциальной системе; поэтому часы 1 и 2 неравноправны.
При малых скоростях u преобразования Лоренца переходят в преобразования Галилея x’ = x – ut, y ’ = y, z’’ = z, t ’ = t, которые описывают связь между картинами различных наблюдателей, известную из повседневного опыта: размеры предметов и длительность процессов одинаковы для всех наблюдателей.
Преобразования Пуанкаре оставляют инвариантной величину, называемую интервалом sAB между событиями А, В, которая определяется соотношением:
s2AB = c2(tA – tB)2 – (xA – xB)2 – (yA – yB)2 – (zA – zB)2. (6)
Математически инвариантность s аналогична инвариантности расстояния при преобразованиях движения в евклидовой геометрии. Величины ct, х, у, z можно рассматривать как четыре координаты события в четырёхмерном пространстве Минковского: х 0 = ct, х 1 = х, x 2 = у, x 3 = z, которые являются компонентами четырёхмерного вектора.
Если вместо x 0 ввести мнимую координату x 4 = ix 0 = ict, то произвольное преобразование Пуанкаре можно записать в виде, полностью аналогичном формуле, описывающей вращения и сдвиги в трёхмерном пространстве.
Вследствие того, что квадраты разностей временных и пространственных координат входят в (6) с разными знаками, знак s 2 может быть различным; геометрия такого пространства отличается от евклидовой и называется псевдоевклидовой. В такой геометрии интервалы разделяются на три типа: s 2 < 0, s 2 > О и s 2 = 0. Интервалы первого и второго типа называются соответственно времениподобными и пространственноподобными. Если s 2 ³ 0, знак tA – tB не зависит от системы отсчёта. Это тесно связано с принципом причинности. Действительно, если s 2 ³ 0 и (для определённости) tA < tB, то события А и В могут быть связаны сигналом, распространяющимся со скоростью u £ с, т.е. А может быть причиной В. Обычные представления о причинности требуют тогда, чтобы в любой системе отсчёта событие В следовало за событием А. Инвариантность условия s 2 = 0 непосредственно выражает инвариантность скорости света. Если s 2 < 0, то знак tA – tB может быть различным в разных и. с. о. Однако это не противоречит причинности, т.к. такие события не могут быть связаны никаким взаимодействием.
Если s 2 < 0, то существует такая система отсчёта, в которой события А и В одновременны; в этой системе s 2 = –l 2, где l— обычное расстояние. При s 2 > 0 существует система отсчёта, в которой события А и В происходят в одной точке.
В классической физике требование инвариантности законов физики относительно преобразований Лоренца означает, что любые физические величины должны преобразовываться как скаляры, векторы или тензоры в пространстве Минковского. Правила вычислений с такими величинами даются тензорным исчислением. Использование тензорного исчисления позволяет записывать законы физики в таком виде, что их лоренц-инвариантность становится непосредственно очевидной.
Законы сохранения в теории относительности и релятивистская механика
В О. т., так же как в классической механике, для замкнутой физической системы сохраняется импульс р и энергия Е. Трёхмерный вектор импульса вместе с энергией образует четырёхмерный вектор импульса-энергии с компонентами Е /с, р, обозначаемый как (Е /с, р). При преобразованиях Лоренца остаётся инвариантной величина
E 2 – (cp) 2 = m 2c 4, (7)
где m – масса покоя частицы. Из требований лоренц-инвариантности следует, что зависимость энергии и импульса от скорости имеет вид
, . (8)
Энергия и импульс частицы связаны соотношением р = Eu/c2. Это соотношение справедливо также для частицы с нулевой массой покоя; тогда u = с и р = Е/с. Такими частицами, по-видимому, являются фотоны (g) и электронные и мюонные нейтрино. Из (8) видно, что импульс и энергия частицы с m ¹ 0 стремятся к бесконечности при u ® с.
Обсуждалась возможность существования объектов, движущихся со скоростью, большей скорости света (т. н. тахионов). Формально это не противоречит лоренц-инвариантности, но приводит к серьёзным затруднениям с выполнением требования причинности.
Масса покоя т не является сохраняющейся величиной. В частности, в процессах распадов и превращений элементарных частиц сумма энергий и импульсов частиц сохраняется, а сумма масс покоя меняется. Так, в процессе аннигиляции позитрона и электрона е + + е– ® 2g сумма масс покоя изменяется на 2 mе.
В системе отсчёта, в которой тело покоится (такая система отсчёта наз.(назыв) собственной), его энергия (энергия покоя) есть Е0 = mс 2. Если тело, оставаясь в покое, изменяет своё состояние, получая энергию в виде излучения или тепла, то из релятивистского закона сохранения энергии следует, что полученная телом энергия DЕ связана с увеличением его массы покоя соотношением DЕ = Dmc 2. Из этого соотношения, названного Эйнштейном принципом эквивалентности массы и энергии, следует, что величина Е0 = mc 2определяет максимальную величину энергии, которая может быть «извлечена» из данного тела в системе отсчёта, в которой оно покоится.
Для движущегося тела величина
(9)
определяет его кинетическую энергию. При u << с (9) переходит в нерелятивистское выражение Екин = mu 2/2, при этом импульс равен р = mu. Из определения Екин следует, что для любого процесса в изолированной системе выполняется равенство:
, (10)
согласно которому увеличение кинетической энергии пропорционально уменьшению суммы масс покоя. Это соотношение широко используется в ядерной физике; оно позволяет предсказывать энерговыделение в ядерных реакциях, если известны массы покоя участвующих в них частиц. Возможность протекания процессов, в которых происходит превращение энергии покоя в кинетическую энергию частиц, ограничена др. законами сохранения (например, законом сохранения барионного заряда, запрещающим процесс превращения протона в позитрон и g-квант).
Иногда вводят массу, определяемую как
; (11)
при этом связь между импульсом и энергией имеет тот же вид, что и в ньютоновской механике: р = mдвижu. Определённая таким образом масса отличается от энергии тела лишь множителем 1/с 2. (В теоретич. физике часто выбирают единицы измерения так, что с = 1, тогда Е = mдвиж.)
Основные уравнения релятивистской механики имеют такой же вид, как второй закон Ньютона и уравнение энергии, только вместо нерелятивистских выражений для энергии и импульса используются выражения (8):
,
, (12)
где F — сила, действующая на тело. Для заряженной частицы, движущейся в электромагнитном поле, F есть Лоренца сила.
Теория относительности и эксперимент
Предположения о точечных событиях, справедливости принципа относительности, однородности времени и однородности и изотропии пространства с неизбежностью приводят к О. т. При этом абстрактно допустим предельный случай, соответствующий с = ¥, однако такая возможность исключена экспериментально: доказано с огромной точностью (см. ниже), что предельная скорость с есть скорость света в вакууме (её значение дано в начале статьи).
Каковы границы применимости О. т.? Отклонения от пространственно-временной геометрии О. т., связанные с гравитацией, наблюдаемы и рассчитываются в ОТО; никаких др. ограничений применимости О. т. пока не обнаружено, хотя неоднократно высказывались подозрения, что на очень малых расстояниях (например, ~10–17см) понятие точечного события, а следовательно, и О. т. могут оказаться неприменимыми (см., например, Квантование пространства-времени).
Предположение о лоренц-инвариантности и точечности событий (означающей локальность взаимодействий) лежит в основе всех современных теорий, в которых существен релятивизм. Справедливость квантовой электродинамики электронов и мюонов, а следовательно, и О. т. установлена вплоть до расстояний 10–15см. При энергиях порядка масс этих частиц согласие квантовой электродинамики с опытом установлено с относительной точностью, несколько лучшей, чем 10–5; с точностью того же порядка должна быть справедлива и механика О. т.
Релятивистские законы сохранения применяются при исследованиях превращений элементарных частиц, вызванных сильным, слабым и электромагнитным взаимодействиями; отсутствие противоречий подтв