Квантовая теория поля
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Квантовая теория поля

Квантовая теория поля

Квантовая теория поля.

  Квантовая теория поля — квантовая теория систем с бесконечным числом степеней свободы (полей физических). К. т. п., возникшая как обобщение квантовой механики в связи с проблемой описания процессов порождения, поглощения и взаимных превращений элементарных частиц, нашла затем широкое применение в теории твёрдого тела, ядра атомного и др. и является теперь основным теоретическим методом исследования квантовых систем.

  I. Частицы и поля квантовой теории

  1. Двойственность классической теории. В классической теории, формирование которой в основном завершилось к началу 20 в., физическая картина мира складывается из двух элементов — частиц и полей. Частицы — маленькие комочки материи, движущиеся по законам классической механики Ньютона. Каждая из них имеет 3 степени свободы: её положение задаётся тремя координатами, например х, y, z, если зависимость координат от времени известна, то это даёт исчерпывающую информацию о движении частицы. Описание полей значительно сложнее. Задать, например, электрическое поле — значит задать его напряжённость Е во всех точках пространства. Т. о., для описания поля необходимо знать не 3 (как для материальной точки), а бесконечно большое число величин в каждый из моментов времени; иначе говоря, поле имеет бесконечное число степеней свободы. Естественно, что и законы динамики электромагнитного поля, установление которых обязано в основном исследованиям М. Фарадея и Дж. Максвелла, оказываются сложнее законов механики.

  Указанное различие между полями и частицами является главным, хотя и не единственным: частицы дискретны, а поля непрерывны; электромагнитное поле (электромагнитные волны) может порождаться и поглощаться, в то время как материальным точкам классической механики возникновение и исчезновение чуждо; наконец, электромагнитные волны могут, накладываясь, усиливать или ослаблять и даже полностью «гасить» друг друга (интерференция волн), чего, разумеется, не происходит при наложении потоков частиц. Хотя частицы и волны переплетены между собой сложной сетью взаимодействий, каждый из этих объектов выступает как носитель принципиально различных индивидуальных черт. Картине мира в классической теории присущи отчётливые черты двойственности. Открытие квантовых явлений поставило на место этой картины другую, которую можно назвать двуединой.

  2. Кванты электромагнитного поля. В 1900 М. Планк для объяснения закономерностей теплового излучения тел впервые ввёл в физику понятие о порции, или кванте, излучения. Энергия E такого кванта пропорциональна частоте n излучаемой электромагнитной волны, E = hn, где коэффициент пропорциональности h = 6,62×10–27 эрг×сек (позднее он был назван постоянной Планка). А. Эйнштейн обобщил эту идею Планка о дискретности излучения, предположив, что такая дискретность не связана с каким-то особым механизмом взаимодействия излучения с веществом, а внутренне присуща самому электромагнитному излучению. Электромагнитное излучение «состоит» из таких квантов — фотонов. Эти представления получили экспериментальное подтверждение — на их основе были объяснены закономерности фотоэффекта и Комптона эффекта.

  Т. о., электромагнитному излучению присущи черты дискретности, которые прежде приписывались лишь частицам. Подобно частице (корпускуле), фотон обладает определённой энергией, импульсом, спином и всегда существует как единое целое. Однако наряду с корпускулярными фотон обладает и волновыми свойствами, проявляющимися, например, в явлениях дифракции света и интерференции света. Поэтому его можно было бы назвать «волно-частицей».

  3. Корпускулярно-волновой дуализм. Двуединое, корпускулярно-волновое представление о кванте электромагнитного поля — фотоне — было распространено Л. де Бройлем на все виды материи. И электроны, и протоны, и любые др. частицы, согласно гипотезе де Бройля, обладают не только корпускулярными, но и волновыми свойствами, Это количественно проявляется в соотношениях де Бройля, связывающих такие «корпускулярные» величины, как энергия E и импульс р частицы, с величинами, характерными для волнового описания, — длиной волны l и частотой n:

E = hn,   p = n ,     (1)

где n — единичный вектор, указывающий направлениераспространения волны (см. Волны де Бройля). Корпускулярно-волновой дуализм (подтверждённый экспериментально) потребовал пересмотра законов движения и самих способов описания движущихся объектов. Возникла квантовая механика (или волновая механика). Важнейшей чертой этой теории является идея вероятностного описания движения микрообъектов. Величиной, описывающей состояние системы в квантовой механике (например, электрона, движущегося в заданном поле), является амплитуда вероятности, или волновая функция y(х, у, z, t). Квадрат модуля волновой функции, |y(х, у, z, t)|2, определяет вероятность обнаружить частицу в момент t в точке с координатами х, у, z. И энергия, и импульс, и все др. «корпускулярные» величины могут быть однозначно определены, если известна y(х, у, z, t). При таком вероятностном описании можно говорить и о «точечности» частиц, Это находит своё отражение в так называемой локальности взаимодействия, означающей, что взаимодействие, например, электрона с некоторым полем определяется лишь значениями этого поля и волновой функции электрона, взятыми в одной и той же точке пространства и в один и тот же момент времени. В классической электродинамике локальность означает, что точечный заряд испытывает воздействие поля в той точке, в которой он находится, и не реагирует на поле во всех остальных точках.

  Являясь носителем информации о корпускулярных свойствах частицы, амплитуда вероятности y(х, у, z, t) в то же время отражает и её волновые свойства. Уравнение, определяющее y(х, у, z, t), — Шрёдингера уравнение  — является уравнением волнового типа (отсюда название — волновая механика); для y(х, у, z, t) имеет место суперпозиции принцип, что и позволяет описывать интерференционные явления.

  Т. о., отмеченная выше двуединость находит отражение в самом способе квантовомеханического описания, устраняющего резкую границу, разделявшую в классической теории поля и частицы. Это описание продиктовано корпускулярно-волновой природой микрообъектов, и его правильность проверена на огромном числе явлений.

  4. Квантовая теория поля как обобщение квантовой механики. Квантовая механика блестяще разрешила важнейшую из проблем — проблему атома, а также дала ключ к пониманию многих др. загадок микромира. Но в то же время самое «старое» из полей — электромагнитное поле — описывалось в этой теории классическими Максвелла уравнениями, т. е. рассматривалось по существу как классическое непрерывное поле. Квантовая механика позволяет описывать движение электронов, протонов и др. частиц, но не их порождение или уничтожение, т. е. применима лишь для описания систем с неизменным числом частиц. Наиболее интересная в электродинамике задача об испускании и поглощении электромагнитных волн заряженными частицами, что на квантовой языке соответствует порождению или уничтожению фотонов, по существу оказывается вне рамок её компетенции. При квантовомеханическом рассмотрении, например, атома водорода можно получить дискретный набор значений энергии электрона, момента количества движения и др. физических величин, относящихся к различным состояниям атома, можно найти, какова вероятность обнаружить электрон на определённом расстоянии от ядра, но переходы атома из одного состояния в другое, сопровождающиеся испусканием или поглощением фотонов, описать нельзя (по крайней мере, последовательно). Т. о., квантовая механика даёт лишь приближённое описание атома, справедливое в той мере, в какой можно пренебречь эффектами излучения.

  Порождаться и исчезать могут не только фотоны. Одно из самых поразительных и, как выяснилось, общих свойств микромира — универсальная взаимная превращаемость частиц. Либо «самопроизвольно» (на первый взгляд), либо в процессе столкновений одни частицы исчезают и на их месте появляются другие. Так, фотон может породить пару электрон-позитрон (см. Аннигиляция и рождение пар); при столкновении протонов и нейтронов могут рождаться пимезоны; пимезон распадается на мюон и нейтрино и т.д. Для описания такого рода процессов потребовалось дальнейшее развитие квантовой теории. Однако новый круг проблем не исчерпывается описанием взаимных превращений частиц, их порождения и уничтожения. Более общая и глубокая задача заключалась в том, чтобы «проквантовать» поле, т. е. построить квантовую теорию систем с бесконечным числом степеней свободы. Потребность в этом была тем более настоятельной, что, как уже отмечалось, установление корпускулярно-волнового дуализма обнаружило волновые свойства у всех «частиц». Решение указанных проблем и является целью того обобщения квантовой механики, которое называется К. т. п.

  Чтобы пояснить переход от квантовой механики к К. т. п., воспользуемся наглядной (хотя далеко не полной) аналогией. Рассмотрим сначала один гармонический осциллятор — материальную точку, колеблющуюся подобно маятнику. Переход от классической механики к квантовой при описании такого маятника выявляет ряд принципиально новых обстоятельств: допустимые значения энергии оказываются дискретными, исчезает возможность одновременного определения его координаты и импульса и т.д. Однако объектом рассмотрения по-прежнему остаётся один маятник (осциллятор), только величины, которые описывали его состояние в классической теории, заменяются, согласно общим положениям квантовой механики, соответствующими операторами.

  Представим, что всё пространство заполнено такого рода осцилляторами. Вместо того чтобы как-то «пронумеровать» эти осцилляторы, можно просто указывать координаты точек, в которых каждый из них находится, — так осуществляется переход к полю осцилляторов, число степеней свободы которого, очевидно, бесконечно велико.

  Описание такого поля можно производить различными методами. Один из них заключается в том, чтобы проследить за каждым из осцилляторов. При этом на первый план выступают величины, называемые локальными, т. е. заданными для каждой из точек пространства (и момента времени), т.к. именно координаты «помечают» выбранный осциллятор. При переходе к квантовому описанию эти локальные классические величины, описывающие поле, заменяются локальными операторами. Уравнения, которые в классической теории описывали динамику поля, превращаются в уравнения для соответствующих операторов. Если осцилляторы не взаимодействуют друг с другом (или с некоторым др. полем), то для такого поля свободных осцилляторов общая картина, несмотря на бесконечное число степеней свободы, получается относительно простой; при наличии же взаимодействий возникают усложнения.

  Другой метод описания поля основан на том, что вся совокупность колебаний осцилляторов может быть представлена как набор волн, распространяющихся в рассматриваемом поле. В случае невзаимодействующих осцилляторов волны также оказываются независимыми; каждая из них является носителем энергии, импульса, может обладать определённой поляризацией. При переходе от классического рассмотрения к квантовому, когда движение каждого осциллятора описывается вероятностными квантовыми законами, волны также приобретают вероятностный смысл. Но с каждой такой волной (согласно корпускулярно-волновому дуализму) можно сопоставить частицу, обладающую той же, что и волна, энергией и импульсом (а следовательно, и массой) и имеющую спин (классическим аналогом которого является момент количества движения циркулярно поляризованной волны). Эту «частицу», конечно, нельзя отождествить ни с одним из осцилляторов поля, взятым в отдельности, — она представляет собой результат процесса, захватывающего бесконечно большое число осцилляторов, и описывает некое возбуждение поля. Если осцилляторы не независимы (есть взаимодействия), то это отражается и на «волнах возбуждения» или на соответствующих им «частицах возбуждения» — они также перестают быть независимыми, могут рассеиваться друг на друге, порождаться и исчезать. Изучение поля, т. о., можно свести к рассмотрению квантованных волн (или «частиц») возбуждений. Более того, никаких др. «частиц», кроме «частиц возбуждения», при данном методе описания не возникает, т.к. каждая частица-осциллятор отдельно в нарисованную общую картину квантованного осцилляторного поля не входит.

  Рассмотренная «осцилляторная модель» поля имеет в основном иллюстративное значение (хотя, например, она довольно полно объясняет, почему в физике твёрдого тела методы К. т. п. являются эффективным инструментом теоретического исследования). Однако она не только отражает общие важные черты теории, но и позволяет понять возможность различных подходов к проблеме квантового описания полей.

  Первый из описанных выше методов ближе к так называемой гейзенберговской картине (или представлению Гейзенберга) квантового поля. Второй — к «представлению взаимодействия», которое обладает преимуществом большей наглядности и поэтому, как правило, будет использоваться в дальнейшем изложении. При этом, конечно, будут рассматриваться различные физические поля, не имеющие механической природы, а не поле механических осцилляторов. Так, рассматривая электромагнитное поле, было бы неправильным искать за электромагнитными волнами какие-то механические колебания: в каждой точке пространства колеблются (т. е. изменяются во времени) напряжённости электрического Е и магнитного Н полей. В гейзенберговской картине описания электромагнитного поля объектами теоретического исследования являются операторы (х) и (х) (и др. операторы, которые через них выражаются), появляющиеся на месте классических величин. Во втором из рассмотренных методов на первый план выступает задача описания возбуждений электромагнитного поля. Если энергия «частицы возбуждения» равна E, а импульс р, то длина волны l и частота n соответствующей ей волны определяются формулами (1). Носитель этой порции энергии и импульса — квант свободного электромагнитного поля, или фотон. Т. о., рассмотрение свободного электромагнитного поля сводится к рассмотрению фотонов.

  Исторически квантовая теория электромагнитного поля начала развиваться первой и достигла известной завершённости; поэтому квантовой теории электромагнитных процессов — квантовой электродинамике — отводится в статье основное место. Однако, кроме электромагнитного поля, существуют и др. типы физических полей: мезонные поля различных типов, поля нейтрино и антинейтрино, нуклонные, гиперонные и т.д. Если физическое поле является свободным (т. е. не испытывающим никаких взаимодействий, в том числе и самовоздействия), то его можно рассматривать как совокупность невзаимодействующих квантов этого поля, которые часто просто называют частицами данного поля. При наличии взаимодействий (например, между физическими полями различных типов) независимость квантов утрачивается, а когда взаимодействия начинают играть доминирующую роль в динамике полей, утрачивается и плодотворность самого введения квантов этих полей (по крайней мере, для тех этапов процессов в этих полях, для которых нельзя пренебречь взаимодействием). Квантовая теория таких полей недостаточно разработана и в дальнейшем почти не обсуждается.

  5. Квантовая теория поля и релятивистская теория. Описание частиц высоких энергий должно проводиться в рамках релятивистской теории, т. е. в рамках специальной теории относительности Эйнштейна (см. Относительности теория). Эта теория, в частности, устанавливает важное соотношение между энергией E, импульсом р и массой m частицы;

,     (2)

(с — универсальная постоянная, равная скорости света в пустоте, с  = 3×1010 см/сек). Из (2) видно, что энергия частицы не может быть меньше mc2. Энергия, конечно, не возникает «из ничего». Поэтому минимальная энергия, необходимая для образования частицы данной массы m (она называется массой покоя), равна mc2.

  Если рассматривается система, состоящая из медленных частиц, то их энергия может оказаться недостаточной для образования новых частиц. В такой «нерелятивистской» системе число частиц может оставаться неизменным. Это и обеспечивает возможность применения для её описания квантовой механики.

  Всё изложенное выше относится к порождению частиц, имеющих отличную от нуля массу покоя. Но у фотона, например, масса покоя равна нулю, так что для его образования совсем не требуется больших, релятивистских, энергий. Однако и здесь невозможно обойтись без релятивистской теории, что ясно хотя бы из того, что нерелятивистская теория применима лишь при скоростях, много меньших скорости света с, а фотон всегда движется со скоростью с.

  Кроме необходимости рассматривать релятивистскую область энергий, есть ещё одна причина важности теории относительности для К. т. п.: в физике элементарных частиц, изучение которых является одной из основных (и ещё не решенных) задач К. т. п., теория относительности играет фундаментальную роль. Это делает развитие релятивистской К. т. п. особенно важным.

  Однако и нерелятивистская К. т. п. представляет значительный интерес хотя бы потому, что она успешно используется в физике твёрдого тела.

  II. Квантовая электродинамика

  1. Квантованное свободное поле. Вакуумное состояние поля, или физический вакуум. Рассмотрим электромагнитное поле, или — в терминах квантовой теории — поле фотонов. Такое поле имеет запас энергии и может отдавать её порциями. Уменьшение энергии поля на h n означает исчезновение одного фотона частоты n, или переход поля в состояние с уменьшившимся на единицу числом фотонов. В результате последовательности таких переходов в конечном итоге образуется состояние, в котором число фотонов равно нулю, и дальнейшая отдача энергии полем становится невозможной. Однако, с точки зрения К. т. п., электромагнитное поле не перестаёт при этом существовать, оно лишь находится в состоянии с наименьшей возможной энергией. Поскольку в таком состоянии фотонов нет, его естественно назвать вакуумным состоянием электромагнитного поля, или фотонным вакуумом. Следовательно, вакуум электромагнитного поля — низшее энергетическое состояние этого поля.

  Представление о вакууме как об одном из состояний поля, столь необычное с точки зрения классических понятий, является физически обоснованным. Электромагнитное поле в вакуумном состоянии не может быть поставщиком энергии, но из этого не следует, что вакуум вообще никак не может проявить себя. Физический вакуум — не «пустое место», а состояние с важными свойствами, которые проявляются в реальных физических процессах (см. ниже). Аналогично, и для др. частиц можно ввести представление о вакууме как о низшем энергетическом состоянии полей этих частиц. При рассмотрении взаимодействующих полей вакуумным называют низшее энергетическое состояние всей системы этих полей.

  Если полю, находящемуся в вакуумном состоянии, сообщить достаточную энергию, то происходит возбуждение поля, т. е. рождение частицы — кванта этого поля. Т. о., появляется возможность описать порождение частиц как переход из «ненаблюдаемого» вакуумного состояния в состояние реальное. Такой подход позволяет перенести в К. т. п. хорошо разработанные методы квантовой механики — свести изменение числа частиц данного поля к квантовым переходам этих частиц из одних состояний в другие.

  Взаимные превращения частиц, порождение одних и уничтожение других, можно количественно описывать при помощи так называемого метода вторичного квантования [предложенного в 1927 П. Дираком и получившего дальнейшее развитие в работах В. А. Фока (1932)].

  2. Вторичное квантование. Переход от классической механики к квантовой называют просто квантованием, или реже — «первичным квантованием». Как уже говорилось, такое квантование не даёт возможности описывать изменение числа частиц в системе. Основной чертой метода вторичного квантования является введение операторов, описывающих порождение и уничтожение частиц. Поясним действие этих операторов на простом примере (или модели) теории, в которой рассматриваются одинаковые частицы, находящиеся в одном и том же состоянии (например, все фотоны считаются имеющими одинаковую частоту, направление распространения и поляризацию). Т. к. число частиц в данном состоянии может быть произвольным, то этот случай соответствует бозе-частицам, или бозонам,

подчиняющимся Бозе — Эйнштейна статистике.

  В квантовой теории состояние системы частиц описывается волновой функцией или вектором состояния. Введём для описания состояния с N частицами вектор состояния YN; квадрат модуля YN, |YN|2, определяющий вероятность обнаружения N частиц, обращается, очевидно, в 1, если N достоверно известно. Это означает, что вектор состояния с любым фиксированным N нормирован на 1. Введём теперь оператор уничтожения частицы а и оператор рождения частицы а+. По определению, а переводит состояние с N частицами в состояние с N—1 частицей, т. е.

     (3)

  Аналогично, оператор порождения частицы а+ переводит состояние YN в состояние с N + 1 частицей:

,     (4)

[множители  в (3) и  в (4) вводятся именно для выполнения условия нормировки: |YN|2= 1]. В частности, при N = 0 а+Y0 = Y1, где Y0 вектор состояния, характеризующий вакуум; т. е. одночастичное состояние получается в результате порождения из «вакуума» одной частицы. Однако аY0 = 0, поскольку невозможно уничтожить частицу в состоянии, в котором частиц нет; это равенство можно считать определением вакуума. Вакуумное состояние Y0 имеет в К. т. п. особое значение, т.к. из него при помощи операторов а+ можно получить любое состояние. Действительно, в рассматриваемом случае (когда состояние всей системы определяется только числом частиц)

,

,     (5)

……………………………………

  Легко показать, что порядок действия операторов а и а+ не безразличен. Действительно, а+Y0) = аY1 = Y0, в то время как а+Y0) = 0. Т. о., (aa+ — a+a)Y0 = Y0, или

aa+—a+a = 1,     (6)

т. е. операторы а+ и а являются непереставимыми (некоммутирующими). Соотношения типа (6), устанавливающие связь между действием двух операторов, взятых в различном порядке называется перестановочными соотношениями, или коммутационными соотношениями для этих операторов, а выражения вида  — коммутаторами операторов  и .

  Если учесть, что частицы могут находиться в различных состояниях, то, записывая операторы порождения и уничтожения, надо дополнительно указывать, к какому состоянию частицы эти операторы относятся. В квантовой теории состояния задаются набором квантовых чисел, определяющих энергию, спин и др. физические величины; для простоты обозначим всю совокупность квантовых чисел одним индексом n: так, а+n обозначает оператор рождения частицы в состоянии с набором квантовых чисел n. Средние числа частиц, находящихся в состояниях, соответствующих различным n, называются числами заполнения этих состояний.

  Рассмотрим выражение an а+mY0. Сначала на Y0 действует «ближайший» к нему оператор а+m; это отвечает порождению частицы в состоянии m. Если n = m, то последующее действие оператора аn приводит опять к Y0, т. е. аn а+n Y0 = Y0. Если n ¹ m, то аn а+m Y0 = 0, поскольку невозможно уничтожение таких частиц, которых нет (оператор аn описывает уничтожение частиц в таких состояниях n, каких не возникает при действии a+n на Y0). С учетом различных состоянии частиц перестановочные соотношения для операторов рождения и уничтожения имеют следующий вид:

аnаm —аm аn = 0,

            а+nа+m—а+m а+n = 0          (7)

  Однако существуют поля, для которых связь между произведением операторов рождения и уничтожения, взятых в различном порядке, имеет др. вид: знак минус в (7) заменяется на плюс (это называется заменой коммутаторов на антикоммутаторы),

     (8)

аnаm —аm аn = 0, а+nа+m—а+m а+n = 0

[эти соотношения также относят к классу перестановочных соотношений, хотя они и не имеют вида (6)]. Операторы, подчиняющиеся соотношениям (8), необходимо вводить для полей, кванты которых имеют полуцелый спин (т. е. являются фермионами) и вследствие этого подчиняются Паули принципу, согласно которому в системе таких частиц (например, электронов) невозможно существование двух или более частиц в одинаковых состояниях (в состояниях с одинаковым набором всех квантовых чисел). Действительно, построив вектор состояния, содержащего 2 частицы (двухчастичного состояния), а+m а+n Y0, нетрудно убедиться [учитывая (8)], что при n = m он равен самому себе с обратным знаком; но это возможно только для величины, тождественно равной нулю. Т. о., если операторы рождения и уничтожения частиц удовлетворяют перестановочным соотношениям (8), то состояния с двумя (или более) частицами, имеющими одинаковые квантовые числа, автоматически исключаются. Такие частицы подчиняются Ферми — Дирака статистике. Для полей же, кванты которых имеют целый спин, операторы рождения и уничтожения частиц удовлетворяют соотношениям (7); здесь возможны состояния с произвольным числом частиц, имеющих одинаковые квантовые числа.

  Наличие двух типов перестановочных соотношений имеет фундаментальное значение, поскольку оно определяет два возможных типа статистик.

  Необходимость введения некоммутирующих операторов для описания систем с переменным числом частиц — типичная черта вторичного квантования.

  Заметим, что «первичное квантование» также можно рассматривать как переход от классической механики, в которой координаты q и импульсы p являются обычными числами (т. е., конечно, qp = pq), к такой теории, в которой q и р заменяются некоммутирующими операторами: . Переход от классической теории поля к квантовой (например, в электродинамике) производится аналогичным методом, но только роль координат (и импульсов) должны при этом играть величины, описывающие распределение поля во всём пространстве и во все моменты времени. Так, в классической электродинамике поле определяется значениями напряжённостей электрического Е и магнитного Н полей (как функций координат и времени). При переходе к квантовой теории Е и Н становятся операторами, которые не коммутируют с оператором числа фотонов в поле.

  В квантовой механике доказывается, что если 2 каких-либо оператора не коммутируют, то соответствующие им физические величины не могут одновременно иметь точные значения. Отсюда следует, что не существует такого состояния электромагнитного поля, в котором были бы одновременно точно определёнными напряжённости поля и число фотонов. Если, в силу физических условий, точно известно число фотонов, то совершенно неопределёнными (способными принимать любые значения) оказываются напряжённости полей. Если же известны точно эти напряжённости, то неопределенным является число фотонов. Вытекающая отсюда невозможность одновременно положить равными нулю напряжённости поля и число фотонов и является физической причиной того, что вакуумное состояние не представляет собой просто отсутствие поля, а сохраняет важные физические свойства.

  3. Полевые методы в квантовой теории многих частиц. Математические методы К. т. п. (как уже отмечалось) находят применение при описании систем, состоящих из большого числа частиц: в физике твёрдого тела, атомного ядра и т.д. Роль вакуумных состояний в твёрдом теле, например, играют низшие энергетические состояния, в которые система переходит при минимальной энергии (т. е. при температуре Т ® 0). Если сообщить системе энергию (например, повышая её температуру), она перейдёт в возбужденное состояние. При малых энергиях процесс возбуждения системы можно рассматривать как образование некоторых элементарных возбуждений — процесс, подобный порождению частиц в К. т. п. Отдельные элементарные возбуждения в твёрдом теле ведут себя подобно частицам — обладают определенной энергией, импульсом, спином. Они называются квазичастицами. Эволюцию системы можно представить как столкновение, рассеяние, уничтожение и порождение квазичастиц, что и открывает путь к широкому применению методов К. т. п. (см. Твёрдое тело). Одним из наиболее ярких примеров, показывающих плодотворность методов К. т. п. в изучении твердого тела является теория сверхпроводимости.

  4. Кванты — переносчики взаимодействия. В классической электродинамике взаимодействие между зарядами (и токами) осуществляется через поле: заряд порождает поле и это поле действует на другие заряды. В квантовой теории взаимодействие поля и заряда выглядит как испускание и поглощение зарядом квантов Поля — фотонов. Взаимодействие же между зарядами, например между двумя электронами в К. т. п. является результатом их обмена фотонами: каждый из электронов испускает фотоны (кванты переносящего взаимодействие электромагнитного поля), которые затем поглощаются др. электроном. Это справедливо и для др. физических полей: взаимодействие в К. т. п. — результат обмена квантами поля.

  В этой достаточно наглядной картине взаимодействия есть, однако, момент, нуждающийся в дополнительном анализе. Пока взаимодействие не началось, каждая из частиц является свободной, а свободная частица не может ни испускать, ни поглощать квантов. Действительно, рассмотрим свободную неподвижную частицу (если частица равномерно движется, всегда можно перейти к такой инерциальной системе отсчёта, в которой она покоится). Запаса кинетической энергии у такой частицы нет, потенциальной — излучение энергетически невозможно. Несколько более сложные рассуждения убеждают и в неспособности свободной частицы поглощать кванты. Но если приведённые соображения справедливы, то, казалось бы, неизбежен вывод о невозможности появления взаимодействий в К. т. п.

  Чтобы разрешить этот парадокс, нужно учесть, что рассматриваемые частицы являются квантовыми объектами и что для них существенны неопределё