Унитарное преобразование
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Унитарное преобразование

Унитарное преобразование, линейное преобразование

x’i = ui1x1 + ui2x2 +... + uinxn (i = 1, 2,..., n)

с комплексными коэффициентами, сохраняющее неизменной сумму квадратов модулей преобразуемых величин

  У. п. представляет собой аналог (точнее, обобщение) поворота в евклидовой плоскости или вращения в трёхмерном евклидовом пространстве на случай n-мерного комплексного векторного пространства, т.к. оно сохраняет для преобразуемого вектора х с компонентами x1, x2,..., xn его длину, равную

.

  Коэффициенты У. п. образуют унитарную матрицу. Совокупность У. п. n-мерного комплексного векторного пространства является группой относительно умножения преобразований. В случае, когда коэффициенты uij и преобразуемые величины xi действительны, У. п. является ортогональным преобразованием n-мерного действительного векторного пространства.