Биополимеры
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Биополимеры

Биополимеры, высокомолекулярные природные соединения, являющиеся структурной, основой всех живых организмов и играющие определяющую роль в процессах жизнедеятельности. К Б. относятся белки, нуклеиновые кислоты и полисахариды; известны также смешанные Б. — гликопротеиды, липопротеиды, гликолипиды и др.

  Биологические функции Б. Нуклеиновые кислоты выполняют в клетке генетические функции. Последовательность мономерных звеньев (нуклеотидов) в дезоксирибонуклеиновой кислоте — ДНК(дезоксирибонуклеиновая кислота) (иногда в рибонуклеиновой кислоте — РНК(рибонуклеиновая кислота)) определяет (в форме генетического кода) последовательность мономерных звеньев (аминокислотных остатков) во всех синтезируемых белках и, т. о., строение организма и протекающие в нём биохимические процессы. При делении каждой клетки обе дочерние клетки получают полный набор генов благодаря предшествующему самоудвоению (репликации) молекул ДНК(дезоксирибонуклеиновая кислота). Генетическая информация с ДНК(дезоксирибонуклеиновая кислота) переносится на РНК(рибонуклеиновая кислота), синтезируемую на ДНК(дезоксирибонуклеиновая кислота) как на матрице (транскрипция). Эта т. н. информационная РНК(рибонуклеиновая кислота) (и-РНК) служит матрицей при синтезе белка, происходящем на особых органоидах клетки — рибосомах (трансляция) при участии транспортной РНК(рибонуклеиновая кислота) (т-РНК). Биологическая изменчивость, необходимая для эволюции, осуществляется на молекулярном уровне за счёт изменений в ДНК(дезоксирибонуклеиновая кислота) (см. Мутация).

  Белки выполняют в клетке ряд важнейших функций. Белки-ферменты осуществляют все химические реакции обмена веществ в клетке, проводя их в необходимой последовательности и с нужной скоростью. Белки мышц, жгутиков микробов, клеточных ворсинок и др. выполняют сократительную функцию, превращая химическую энергию в механическую работу и обеспечивая подвижность организма в целом или его частей. Белки — основной материал большинства клеточных структур (в т. ч. в специальных видах тканей) всех живых организмов, оболочек вирусов и фагов. Оболочки клеток являются липопротеидными мембранами, рибосомы построены из белка и РНК(рибонуклеиновая кислота) и т.д. Структурная функция белков тесно связана с регуляцией поступления различных веществ в субклеточные органеллы (активный транспорт ионов и др.) и с ферментативным катализом. Белки выполняют и регуляторные функции (репрессоры), «запрещая» или «разрешая» проявление того или иного гена. В высших организмах имеются белки — переносчики тех или иных веществ (например, гемоглобин — переносчик молекулярного кислорода) и иммунные белки, защищающие организм от чужеродных веществ, проникающих в организм (см. Иммунитет). Полисахариды выполняют структурную, резервную и некоторые другие функции. Белки и нуклеиновые кислоты образуются в живых организмах путём матричного ферментативного биосинтеза. Имеются теперь и биохимические системы внеклеточного синтеза Б. с помощью ферментов, выделенных из клеток. Разработаны методы химического синтеза белков и нуклеиновых кислот.

  Первичная структура Б. Состав и последовательность мономерных звеньев Б. определяют их т. н. первичную структуру. Все нуклеиновые кислоты являются линейными гетерополимерами — сахарофосфатными цепочками, к звеньям которых присоединены боковые группы — азотистые основания: аденин и тимин (в РНК(рибонуклеиновая кислота) — урацил), гуанин и цитозин; в некоторых случаях (главным образом в т-РНК) боковые группы могут быть представлены другими азотистыми основаниями. Белки — также гетерополимеры; молекулы их образованы одной или несколькими полипептидными цепочками, соединёнными дисульфидными мостиками. В состав полипептидных цепей входит 20 видов различных мономерных звеньев — остатков аминокислот. Молекулярная масса ДНК(дезоксирибонуклеиновая кислота) варьирует от нескольких млн. (у мелких вирусов и бактериофагов) до ста млн. и более (у более крупных фагов); бактериальные клетки содержат по одной молекуле ДНК(дезоксирибонуклеиновая кислота) с молекулярной массой в несколько млрд. ДНК(дезоксирибонуклеиновая кислота) высших организмов может иметь и большую молекулярную массу, но измерить её пока не удалось из-за разрывов в молекулах ДНК(дезоксирибонуклеиновая кислота), возникающих при их выделении. Рибосомные РНК(рибонуклеиновая кислота) имеют молекулярную массу от 600 тыс. до 1,1 млн., информационная (и-РНК) — от сотен тысяч до нескольких миллионов, транспортная (т-РНК) — около 25 тыс. Молекулярная масса белков варьирует от 10 тыс. (и менее) до миллионов; в последнем случае, однако, обычно возможно разделение белковой частицы на субъединицы, соединённые между собой слабыми, большей частью гидрофобными, связями.

  Конформация, т. е. та или иная пространственная форма молекул Б., определяется их первичной структурой. В зависимости от химического строения и внешних условий молекулы Б. могут находиться либо в одной или в нескольких преимущественных конформациях (обычно встречающиеся в природных условиях нативные состояния Б.: например, глобулярное строение белков, двойная спираль ДНК(дезоксирибонуклеиновая кислота)), либо принимать многие более или менее равновероятные конформации. Белки делят по пространственной структуре на фибриллярные (нитевидные) и глобулярные; белки-ферменты, белки-переносчики, иммунные и некоторые другие имеют, как правило, глобулярную структуру. Для ряда белков — гемоглобин, миоглобин, лизоцим, рибонуклеаза и др. — эта структура установлена во всех деталях (с определением при помощи рентгеноструктурного анализа расположения каждого атома). Она определяется последовательностью аминокислотных остатков и образуется и поддерживается относительно слабыми взаимодействиями между мономерными звеньями полипептидных цепей в водно-солевом растворе (кулоновские и дипольные силы, водородные связи, гидрофобные взаимодействия), а также дисульфидными связями. Глобула белка формируется так, что большинство полярных гидрофильных аминокислотных остатков оказывается снаружи и контактирует с растворителем, а большинство неполярных (гидрофобных) остатков находится внутри и изолировано от взаимодействия с водой. Молекулы белка, обладающие избытком неполярных групп, когда часть из них оказывается на поверхности глобулы, образуют высшую, т. н. четвертичную структуру, при которой несколько глобул агрегируют, взаимодействуя между собой в основном неполярными участками (рис. 1). Пространственная структура каждого белка-фермента уникальна и обеспечивает необходимое для его функционирования расположение в пространстве всех звеньев Б., в особенности т. н. активных центров. В то же время она не абсолютно жестка и допускает необходимые в процессе функционирования (при взаимодействии с субстратами, ингибиторами и другими веществами) конформационные сдвиги и изменения.

  Пространственная структура нативной ДНК(дезоксирибонуклеиновая кислота) образована двумя комплементарными нитями и представляет собой двойную спираль Крика — Уотсона; в ней противоположные азотистые основания попарно связаны водородными связями — аденин с тимином и гуанин с цитозином. Устойчивость двойной спирали обеспечивается, наряду с водородными связями, также гидрофобным взаимодействием между плоскими кольцами азотистых оснований, расположенных стопкой (стопочное взаимодействие, или стакинг). Нити РНК(рибонуклеиновая кислота) спирализованы лишь частично. ДНК(дезоксирибонуклеиновая кислота) вирусов, бактериофагов, бактерий, а также митохондриальная в ряде случаев представляет собой замкнутое кольцо; при этом наряду со спиралью Крика — Уотсона наблюдается ещё дополнительная т. н. сверхспирализация.

  Денатурация Б. Нарушение нативной пространственной структуры Б. при различных воздействиях (повышение температуры, изменение концентрации металлов, кислотности раствора и др.) называется денатурацией и в ряде случаев обратимо (обратный процесс называется ренатурацией; рис. 2). Молекулы Б. — кооперативные системы: поведение их зависит от взаимодействий составляющих частей. Кооперативность молекул Б. определяется тем, что повороты отдельных звеньев из-за внутримолекулярных взаимодействии зависят от конформации соседних звеньев. В основе денатурации Б. при изменении внешних условий обычно лежат кооперативные конформационные превращения (например, переходы a-спираль — b-структура, a-спираль — клубок, b-структура — клубок для полипептидов, переход глобула — клубок для глобулярных белков, переход спираль — клубок для нуклеиновых кислот). В отличие от фазовых переходов (кипение жидкости, плавление кристалла), являющихся предельным случаем кооперативных процессов и происходящих скачком, кооперативные переходы Б. совершаются в конечном, хотя и сравнительно узком, интервале изменений внешних условий. В этом интервале одномерные, линейные молекулы (нуклеиновые кислоты, полипептиды), претерпевающие переход спираль — клубок, разбиваются на чередующиеся спиральные и клубкообразные участки (рис. 3).

  Переход спираль — клубок в ДНК(дезоксирибонуклеиновая кислота) наблюдается при повышении температуры, добавлении в раствор кислоты или щёлочи, а также под влиянием других денатурирующих агентов. Этот переход в гомополинуклеотидах происходит при нагревании в интервале десятых долей °С, в фаговых и бактериальных ДНК(дезоксирибонуклеиновая кислота) — в интервале 3—5°С (рис. 3), в ДНК(дезоксирибонуклеиновая кислота) высших организмов — в интервале 10—15 °С. Чем выше гетерогенность ДНК(дезоксирибонуклеиновая кислота), тем шире интервал перехода и меньше способность молекул ДНК(дезоксирибонуклеиновая кислота) к ренатурации. Переход спираль — клубок в различных видах РНК(рибонуклеиновая кислота) носит менее кооперативный характер (рис. 4) и происходит в более широком интервале температурных или других денатурирующих воздействий.

  Б. — полимерные электролиты, их пространственная конформация и кооперативные переходы зависят как от степени ионизации молекулы, так и от концентрации ионов в среде, что влияет на электростатические взаимодействия как между отдельными частями молекулы, так и между Б. и растворителем.

  Строение и биологические функции Б. Строение Б. — результат длительной эволюции на молекулярном уровне, вследствие чего эти молекулы идеально приспособлены к выполнению своих биологических задач. Между первичной структурой, конформацией Б. и конформационными переходами, с одной стороны, и их биологическими функциями — с другой, существуют тесные связи, исследование которых — одна из главных задач молекулярной биологии. Установление таких связей в ДНК(дезоксирибонуклеиновая кислота) позволило понять основные механизмы репликации, транскрипции и трансляции, а также мутагенеза и некоторых других важнейших биологических процессов. Линейная структура молекулы ДНК(дезоксирибонуклеиновая кислота) обеспечивает запись генетической информации, её удвоение при матричном синтезе ДНК(дезоксирибонуклеиновая кислота) и получение (также путём матричного синтеза) многих копий с одного и того же гена, т. е. молекул и-РНК. Сильные ковалентные связи между нуклеотидами обеспечивают сохранность генетической информации при всех этих процессах. В то же время относительно слабые связи между нитями ДНК(дезоксирибонуклеиновая кислота) и возможность вращения вокруг простых химических связей обеспечивают гибкость и лабильность пространственной структуры, необходимые для разделения нитей при репликации и транскрипции, а также подвижность молекулы и-РНК, служащей матрицей при биосинтезе белка (трансляция). Исследование пространственной структуры и конформационных изменений белков-ферментов на разных стадиях ферментативной реакции при взаимодействии с субстратами и коферментами даёт возможность установить механизмы биокатализа и понять природу огромного ускорения химических реакций, осуществляемого ферментами.

  Методы исследования Б. При исследовании строения и конформационных превращений Б. широко используются как очищенные природные Б., так и их синтетические модели, которые проще по строению и легче поддаются исследованию. Так, при изучении белков моделями служат гомогенные или гетерогенные полипептиды (с заданным или случайным чередованием аминокислотных остатков). Моделями ДНК(дезоксирибонуклеиновая кислота) и РНК(рибонуклеиновая кислота) являются соответствующие синтетические гомогенные или гетерогенные полинуклеотиды. К методам исследования Б. и их моделей относятся рентгеноструктурный анализ, электронная микроскопия, изучение спектров поглощения, оптической активности, люминесценции, методы светорассеяния и динамического двойного лучепреломления, седиментационный метод, вискозиметрия, физико-химические методы разделения и очистки и ряд др. Все методы, разработанные для изучения синтетических полимеров, применимы и к Б. При трактовке свойств Б. и их моделей, закономерностей их конформационных превращений используются также методы теоретической физики (статистической физики, термодинамики, квантовой механики и др.).

  Лит.: Бреслер С. Е., Введение в молекулярную биологию, М.—Л., 1966; Волькенштейн М. В., Молекулы и жизнь, М., 1965; Уотсон Дж., Молекулярная биология гена, пер.(перевод) с англ.(английский), М., 1967; физические методы исследования белков и нуклеиновых кислот, М., 1967.

  Ю. С. Лазуркин.

Рис. 1. Образование четвертичной структуры глобулярных белков. Заштрихованы редко — полярные (гидрофильные) части белковых глобул, густо — неполярные (гидрофобные) области.

Рис. 3. Схема перехода спираль — клубок для ДНК(дезоксирибонуклеиновая кислота): 1 — нативное состояние (вместо двойной спирали для простоты изображена «верёвочная лестница»); 2 — состояние ДНК(дезоксирибонуклеиновая кислота) в области перехода; 3 — денатурированное состояние (однонитевые клубки).

Рис. 2. Схема денатурации и ренатурации глобулярного белка (на примере фермента рибонуклеазы).