Бесселя неравенство
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Бесселя неравенство

Бесселя неравенство, неравенство для коэффициентов ряда Фурье (см. Фурье ряд) по произвольной ортонормированной системе функций jk (x) (k = 1, 2...), т. е. системе, определённой на некотором отрезке [а, b] и удовлетворяющей условиям (k ¹ l)

Если функция f (x) измерима на отрезке [а, b], а функция f2(x) интегрируема на этом отрезке и

  — ряд Фурье f (x) по системе jk (x), то справедливо Б. н.

Б. н. играет важную роль во всех исследованиях, относящихся к теории ортогональных рядов. В частности, оно показывает, что коэффициенты Фурье функции f (x) стремятся к нулю при n ® ¥. Для тригонометрической системы функций это неравенство было получено Ф. Бесселем (1828). Если система функций jk такова, что для любой функции f Б. н. обращается в равенство, то оно называется Парсеваля равенством.

  С. Б. Стечкин.