Электромагнитные волны
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Электромагнитные волны

Электромагнитные волны, электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью. Существование Э. в. было предсказано М. Фарадеем в 1832. Дж. Максвелл в 1865 теоретически показал, что электромагнитные колебания не остаются локализованными в пространстве, а распространяются в вакууме со скоростью света с во все стороны от источника. Из того обстоятельства, что скорость распространения Э. в. в вакууме равна скорости света, Максвелл сделал вывод, что свет представляет собой Э. в. В 1888 максвелловская теория Э. в. получила подтверждение в опытах Г. Герца, что сыграло решающую роль для её утверждения.

загрузка...

  Теория Максвелла позволила единым образом подойти к описанию радиоволн, света, рентгеновских лучей и гамма-излучения. Оказалось, что это не излучения различной природы, а Э. в. с различной длиной волны. Частота w колебаний электрического Е и магнитного Н полей связана с длиной волны l соотношением: l= 2pс/w. Радиоволны, рентгеновские лучи и g-излучение находят своё место в единой шкале Э. в. (рис.), причём между соседними диапазонами шкалы Э. в. нет резкой границы.

  Особенности Э. в., законы их возбуждения и распространения описываются Максвелла уравнениями. Если в какой-то области пространства существуют электрические заряды е и токи I, то изменение их со временем t приводит к излучению Э. в. На скорость распространения Э. в. существенно влияет среда, в которой они распространяются. Э. в. могут испытывать преломление, в реальных средах имеет место дисперсия волн, вблизи неоднородностей наблюдаются дифракция волн, интерференция волн (прямой и отражённой), полное внутреннее отражение и другие явления, свойственные волнам любой природы. Пространств, распределение электромагнитных полей, временные зависимости E (t) и H (t), определяющие тип волн (плоские, сферические и др.), вид поляризации (см. Поляризация волн) и другие особенности Э. в. задаются, с одной стороны, характером источника излучения, и с другой — свойствами среды, в которой они распространяются. В случае однородной и изотропной среды, вдали от зарядов и токов, создающих электромагнитное поле, уравнения Максвелла, приводят к волновым уравнениям:

  ; ,

  описывающим распространение плоских монохроматических Э. в.:

  Е = E0 cos (kr — wt + j)

  Н = H0 cos (kr — wt + j).

  Здесь e — диэлектрическая проницаемость, mÑ — магнитная проницаемость среды, E0 и H0 амплитуды колебаний электрических и магнитных полей, w частота этих колебаний, j — произвольный сдвиг фазы, k — волновой вектор, r — радиус-вектор точки; Ñ2Лапласа оператор.

  Если среда неоднородна или содержит поверхности, на которых изменяются её электрические либо магнитные свойства, или если в пространстве имеются проводники, то тип возбуждаемых и распространяющихся Э. в. может существенно отличаться от плоской линейно-поляризованной волны. Э. в. могут распространяться вдоль направляющих поверхностей (поверхностные волны), в передающих линиях и в полостях, образованных хорошо проводящими стенками (см. Радиоволновод, Световод, Квазиоптика).

  Характер изменения во времени Е и Н определяется законом изменения тока I и зарядов e, возбуждающих Э. в. Однако форма волны в общем случае не следует I (t) или e (t). Она в точности повторяет форму тока только в случае, если и Э. в. распространяются в линейной среде (электрические и магнитные свойства которой не зависят от Е и Н). Простейший случай возбуждение и распространение Э. в. в однородном изотропном пространстве с помощью диполя Герца (отрезка провода длиной l << l, по которому протекает ток I = I0 sin wt). На расстоянии от диполя много большем l образуется волновая зона (зона излучения), где распространяются сферические Э. в. Они поперечные и линейно поляризованы. В случае анизотропии среды могут возникнуть изменения поляризации (см. Излучение и приём радиоволн).

  В изотропном пространстве скорость распространения гармонических Э. в., т. e. фазовая скорость . При наличии дисперсии скорость переноса энергии с (групповая скорость) может отличаться от v. Плотность потока энергии S, переносимой Э. в., определяется Пойнтинга вектором: S = (с/4p) [ЕН]. Т. к. в изотропной среде векторы Е и Н и волновой вектор образуют правовинтовую систему, то S совпадает с направлением распространения Э. в. В анизотропной среде (в том числе вблизи проводящих поверхностей) S может не совпадать с направлением распространения Э. в.

  Появление квантовых генераторов, в частности лазеров, позволило достичь напряжённости электрического поля в Э. в., сравнимых с внутриатомными полями. Это привело к развитию нелинейной теории Э. в. При распространении Э. в. в нелинейной среде (e и m зависят от Е и Н) её форма изменяется. Если дисперсия мала, то по мере распространения Э. в. они обогащаются т. н. высшими гармониками и их форма постепенно искажается. Например, после прохождения синусоидальной Э. в. характерного пути (величина которого определяется степенью нелинейности среды) может сформироваться ударная волна, характеризующаяся резкими изменениями Е и Н (разрывы) с их последующим плавным возвращением к первоначальным величинам. Ударная Э. в. далее распространяется без существ, изменений формы; сглаживание резких изменений обусловлено главным образом затуханием. Большинство нелинейных сред, в которых Э. в. распространяются без сильного поглощения, обладает значительной дисперсией, препятствующей образованию ударных Э. в. Поэтому образование ударных волн возможно лишь в диапазоне l от нескольких см до длинных волн. При наличии дисперсии в нелинейной среде возникающие высшие гармоники распространяются с различной скоростью и существенного искажения формы исходной волны не происходит. Образование интенсивных гармоник и взаимодействие их с исходной волной может иметь место лишь при специально подобранных законах дисперсии (см. Нелинейная оптика, Параметрические генераторы света).

  Э. в. различных диапазонов l характеризуются различными способами возбуждения и регистрации, по-разному взаимодействуют с веществом и т. п. Процессы излучения и поглощения Э. в. от самых длинных волн до инфракрасного излучения достаточно полно описываются соотношениями электродинамики. На более высоких частотах доминируют процессы, имеющие существенно квантовую природу, а в оптическом диапазоне и тем более в диапазонах рентгеновских и g-лучей излучение и поглощение Э. в. могут быть описаны только на основе представлений о дискретности этих процессов.

  Квантовая теория поля внесла существенные дополнения и в само представление об Э. в. Во многих случаях электромагнитное излучение ведёт себя не как набор монохроматических Э. в. с частотой w и волновым вектором k, а как поток квазичастиц — фотонов с энергией  и импульсом  (Планка постоянная). Волновые свойства проявляются, например, в явлениях дифракции и интерференции, корпускулярные — в фотоэффекте и Комптона эффекте.

  Лит.: Тамм И. Е., Основы теории электричества, 9 изд., М., 1976; Ландау Л. Д., Лифшиц Е. М., Теория поля, 6 изд., М., 1973 (Теоретическая физика, т. 2); их же, Электродинамика сплошных сред, М., 1959; Ландсберг Г. С., Оптика, 5 изд., М., 1976.

  В. В. Мигулин.

Шкала электромагнитных волн.