Штурма-Лиувилля задача
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Штурма-Лиувилля задача

Штурма — Лиувилля задача, задача о нахождении отличных от нуля решений дифференциального уравнения

  -[p (x) y']' + q (x) y = ly, (1)

загрузка...

  удовлетворяющих граничным условиям вида

  A1y (a) + B1y'(a) 0, А2у (b) + B2y'(b) = 0

  (т. н. собственных функций), а также о нахождении значений параметра l (собственных значений), при которых существуют такие решения. При некоторых условиях на коэффициенты р (х), q (x) Ш.—Л. з. можно свести к рассмотрению аналогичной задачи для уравнения вида

  -y" + q (x) y = ly. (2)

  Была впервые (1837—41) исследована Ж. Лиувиллем и Ж. Ш. Ф. Штурмом.

  Решение некоторых видов уравнений математической физики методом Фурье приводит к Ш.— Л. з. Например, задача о колебаниях однородной струны, закрепленной на концах, приводит к Ш.— Л. з. для уравнения —у" = lу с граничными условиями y (0) = y (p) = 0. В этом случае существует бесконечная последовательность значений 12, 22,..., n2,..., которым соответствуют собственные функции sinnx, образующие на отрезке [0, p] полную ортогональную систему функций (см. Ортогональная система функций). Аналогично обстоит дело и в общем случае, возникающем, например, при изучении распространения тепла в неоднородном стержне и т.д. И здесь, если функция q (x) в уравнении (2) непрерывна и действительна на отрезке [a, b], a A1, B1, A2, B2 действительные числа, существует возрастающая последовательность действительных собственных значений l1,..., lп,..., стремящаяся к бесконечности, причём каждому из lп соответствует определённая с точностью до постоянного множителя собственная функция jп (х), имеющая n нулей на участке а < х < b. Функции jп (х) образуют на [а, b] полную ортогональную систему функций [для уравнения (1) имеет место ортогональность с весом р (х)]. Полнота такой системы функций была доказана В. А. Стекловым в 1896. Весьма общие теоремы о разложении функций в ряды Фурье по системе jп (х) доказал Д. Гильберт (1904) с помощью теории линейных интегральных уравнений. При возрастании п собственные значения и собственные функции Ш.¾ Л. з. для уравнения (2) стремятся к собственным значениям и собственным функциям для уравнения —у" = lу при тех же граничных условиях. Большинство встречающихся в математике ортогональных систем функций, например, многочлены Лежандра, многочлены Эрмита, являются системами собственных функций некоторых Ш.— Л. з.

  Иногда Ш.— Л. з. называют краевую задачу для уравнения (1) при более общих краевых условиях:

  aiy (а) + biy'(а) + giy (b) + diy'(b) = 0, i = 1, 2,

  где ai, bi, gi, di — постоянные числа. Среди краевых условий такого вида наиболее важными являются у (а) = у (b), y'(a)=y'(b) (периодические условия) и у (а)= —у (b), у'(а) = —y'(b) (полупериодические условия).

  Многие задачи математической физики (например, задача о распространении тепла в бесконечном неоднородном стержне) приводит к Ш.— Л. з. на полуоси или на всей оси. В 1-м случае рассматриваются решения уравнения (2), удовлетворяющие условию A1y (0)+B1y'(0) = 0; вместо последовательности собственных функций здесь появляется совокупность собственных функций j(х, l), зависящих от непрерывно изменяющегося параметра l. Вместо разложения в ряды Фурье рассматриваются разложения вида

  ,

  где r(l) некоторая неубывающая функция. Эти разложения аналогичны Фурье интегралу. При этом

 

  и

.

  Аналогичные факты имеют место и для Ш.— Л. з. на всей оси. Для некоторых задач математической физики важное значение имеет обратная Ш.—Л. з., т. е. задача о восстановлении дифференциального уравнения по функции r(l). Эта задача была поставлена в частном случае В. А. Амбарцумяном, а в более общем случае швед.(шведский) математиком Г. Бортом и решена М. Г. Крейном, И. М. Гельфандом и Б. М. Левитаном.

  Ш.— Л. з. возникает также в некоторых вопросах квантовой механики и вариационного исчисления.

  Лит.: Курант Р., Гильберт Д., Методы математической физики, пер.(перевод) с нем.(немецкий), 3 изд., т. 1, М.— Л., 1951; Сансоне Дж., Обыкновенные дифференциальные уравнения, пер.(перевод) с итал.(итальянский), т. 1, М., 1953; Левитан Б. М., Разложение по собственным функциям дифференциальных уравнений второго порядка, М.— Л., 1950.