Тригонометрическое уравнение
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Тригонометрическое уравнение

Тригонометрическое уравнение, алгебраическое уравнение относительно тригонометрической функций неизвестного аргумента. Для решения Т. у., пользуясь различными соотношениями между тригонометрическими функциями, преобразуют Т. у. к такому виду, чтобы можно было определить значения одной из тригонометрических функций искомого аргумента. После этого корни Т. у. получаются с помощью обратных тригонометрических функций. Например, sin х + sin 2x + sin Зх = 0 можно привести к виду 2 sin 2x cos х + sin 2x = 0 или sin 2x (2cos х + 1) = 0, откуда sin 2x = 0 или же cos х = —1/2; это даёт решения Т. у. х = Arc sin 0 = и х = Arc cos ( — ) = 2/3p(Зn ± ), где n — произвольное целое число (положительное или отрицательное).