Тригонометрия
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Тригонометрия

Тригонометрия (от греч.(греческий) trígōnon — треугольники ¼метрия), раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Т. делится на плоскую, или прямолинейную, и сферическую тригонометрию. Теория тригонометрических функций (гониометрия) и её приложения к решению плоских прямоугольных и косоугольных треугольников изучаются в средней школе.

  Основные формулы плоской Т. Пусть а, b, с — стороны треугольника, А, В, С — противолежащие им углы (А+В+С = p), ha, hb, hc — высоты, 2p — периметр, S — площадь, 2R — диаметр окружности, описанной около треугольника. Теорема синусов:

  ,

  теорема косинусов:

  a2 = b2 + c2 2bc cos A,

  теорема тангенсов:

  ,

  площадь треугольника:

  .

  Углы треугольника, если известны стороны, могут быть найдены по теореме косинусов или по формулам вида:

  .

  Плоская Т. начала развиваться позже сферической, хотя отдельные теоремы её встречались и раньше. Например, 12-я и 13-я теоремы второй книги «Начал» Евклида (3 в. дон. э.) выражают по существу теорему косинусов. Плоская Т. получила развитие у аль-Баттани (2-я половина 9 — начало 10 вв.(века)), Абу-ль-Вефа (10 в.), Бхаскара (12 в.) и Насирэддина Туси (13 в.), которым была уже известна теорема синусов. Теорема тангенсов была получена Региомонтаном (15 в.). Дальнейшие работы в области Т. принадлежат Н. Копернику (1-я половина 16 в.), Т. Браге (2-я половина 16 в.), Ф. Виету (16 в.), И. Кеплеру (конец 16 — 1-я половина 17 вв.(века)). Современный вид Т. получила в работах Л. Эйлера (18 в.).

  Лит.: Кочетков Е. С., Кочеткова Е. С., Алгебра и элементарные функции, ч. 1—2, М., 1966.