Стекло
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Стекло

Стекло, твёрдый аморфный материал, полученный в процессе переохлаждения расплава. Для С. характерна обратимость перехода из жидкого состояния в метастабильное, неустойчивое стеклообразное состояние. При определённых температурных условиях кристаллизуется. С. не плавится при нагревании подобно кристаллическим телам, а размягчается, последовательно переходя из твёрдого состояния в пластическое, а затем в жидкое. По агрегатному состоянию С. занимает промежуточное положение между жидким и кристаллическим веществами. Упругие свойства делают С. сходным с твёрдыми кристаллическими телами, а отсутствие кристаллографической симметрии (и связанная с этим изотропность) приближает к жидким. Склонность к образованию С. характерна для многих веществ (селен, сера, силикаты, бораты и др.).

Состав некоторых промышленных стекол

Химический состав

Стекло

SiO2

B2О3

Al2O3

MgO

CaO

BaO

PbO

Na2O

K2O

Fe2O3

SO3

Оконное

71,8

2

4,1

6,7

14,8

0,1

0,5

Тарное

71,5

3,3

3,2

5,2

16

0,6

0,2

Посудное

74

0,5

7,45

16

2

0,05

Хрусталь

56,5

0,48

1

27

6

10

0,02

Химико-
лабораторное

68,4

2,7

3,9

8,5

9,4

7,1

Оптическое

41,4

53,2

5,4

Кварцоидное

96

3,5

0,5

 

Электрокол-
бочное

71,9

3,5

5,5

2

16,1

1

Электроваку-
умное

66,9

20,3

3,5

3,9

5,4

Медицинское

73

4

4,5

1

7

8,5

2

Жаростойкое

57,6

25

8

7,4

2

Термостойкое

80,5

12

2

0,5

4

1

Термометри-
ческое

57,1

10,1

20,6

4,6

7,6

Защитное

12

86

 

2

Радиационно-
стойкое

48,2

4

0,65

0,15

29,5

1

7,5

Стеклянное волокно

71

3—

3

8

15

  С. называют также отдельные группы изделий из С., например строительное С., тарное С., химико-лабораторное С. и др. Изделия из С. могут быть прозрачными или непрозрачными, бесцветными или окрашенными, люминесцировать под воздействием, например, ультрафиолетового и g-излучения, пропускать или поглощать ультрафиолетовые лучи и т.д. Наибольшее распространение получило неорганическое С., характеризующееся высокими механическими тепловыми, химическими и др. свойствами. Основная масса неорганического С. выпускается для строительства (главным образом листовое) и для изготовления тары. Эти виды продукции получают преимущественно из С. на основе двуокиси кремния (силикатное С.); применение находят также и др. кислородные (оксидные) С., в состав которых входят окислы фосфора, алюминия, бора и т.д. К бескислородным неорганическим С. относятся С. на основе халькогенидов мышьяка (As2S3), сурьмы (Sb2Se3) и т.д., галогенидов бериллия (BeFz) и т.д. (см. также Полупроводники аморфные).

  По назначению различают: строительное стекло (оконное, узорчатое, стеклянные блоки и т.д.), тарное стекло, стекло техническое (кварцевое стекло, светотехническое стекло, стеклянное волокно и т.д.), сортовое стекло и т.д. Вырабатываются С., защищающие от ионизирующих излучений, С. индикаторов проникающей радиации, фотохромные С. с переменным светопропусканием, С., применяемое в качестве лазерных материалов, увиолевое стекло, пеностекло, растворимое С. и др. Растворимое С., содержащее около 75% 3102, 24% Na2O и др. компоненты, образует с водой клейкую жидкость (жидкое С.); используется как уплотняющее средство, например для изготовления силикатных красок, конторского клея, в качестве диспергаторов и моющих средств, для пропитки тканей, бумаги и пр. Химический состав некоторых видов С. приведён в таблице.

  Физико-химические свойства С. Свойства С. зависят от сочетания входящих в их состав компонентов. Наиболее характерное свойство С. — прозрачность (светопрозрачность оконного С. 83—90%, а оптического стекла до 99,95%). С. типично хрупкое тело, весьма чувствительное к механическим воздействиям, особенно ударным, однако сопротивление сжатию у С. такое же, как у чугуна.

  Для повышения прочности С. подвергают упрочнению (закалка, ионный обмен, при котором на поверхности С. происходит замена ионов, например натрия, на ионы лития или калия, химическая и термохимическая обработка и др.), что ослабляет действие поверхностных микротрещин (трещины Гриффитса), возникающих на поверхности С. в результате воздействия окружающей среды (температура, влажность и пр.) и являющихся концентраторами напряжений, и позволяет повысить прочность С. в 4—50 раз. Обычно для устранения влияния микротрещин применяют стравливание или сжатие поверхностного слоя. При стравливании дефектный слой растворяется плавиковой кислотой, а на обнажившийся бездефектный слой наносится защитная плёнка, например из полимеров. При закалке поверхностный слой сжимается, что препятствует раскрытию трещин. Плотность С. 2200—8000 кг/м3, твёрдость по минералогической шкале 4,5—7,5, микротвёрдость 4—10 Гн/м2, модуль упругости 50—85 Гн/м2. Предел прочности С. при сжатии равен 0,5—2 Гн/м2, при изгибе 30—90 Гн/м2, при ударном изгибе 1,5—2 Гн/м2. Теплоёмкость С. 0,3—1 кдж/кг -К, термостойкость 80°— 1000 °С, температурный коэффициент расширения (0,56—12) 109 1/К. Коэффициент теплопроводности С. мало зависит от его химического состава и равен 0,7—1,3 вт/(м. К). Коэффициент преломления 1,4—2,2, электрическая проводимость 10-8—10-18 ом -1. см-1, диэлектрическая проницаемость 3,8—16.

  Технология С. производство С. состоит из следующих процессов: подготовки сырьевых компонентов, получения шихты, варки С., охлаждения стекломассы, формования изделий, их отжига и обработки (термической, химической, механической). К главным компонентам относят стеклообразующие вещества (природные, например SiO2, и искусственные, например Na2CO3), содержащие основные (щелочные и щёлочноземельные) и кислотные окислы. Главный компонент большинства промышленных С. — кремнезём (кремния двуокись), содержание которого в С. составляет от 40 до 80% (по массе), а в кварцевых и кварцоидных от 96 до 100%. В стекловарении обычно в качестве источника кремнезёма используют кварцевые стекольные пески, которые в случае необходимости обогащают. Сырьём, содержащим борный ангидрид, являются борная кислота, бура и др. Глинозём вводится с полевыми шпатами, нефелином и т.д.; щелочные окислы — с кальцинированной содой и поташом; щёлочноземельные окислы — с мелом, доломитом и т.п. Вспомогательные компоненты — соединения, придающие то или иное свойство, например окраску, ускоряющие процесс варки и т.д. Например, соединения марганца, кобальта, хрома, никеля используются как красители, церия, неодима, празеодима, мышьяка, сурьмы — как обесцвечиватели и окислители, фтора, фосфора, олова, циркония — как глушители (вещества, вызывающие интенсивное светорассеяние); в качестве осветлителей применяют хлорид натрия, сульфат и нитрат аммония и др. Все компоненты перед варкой просеиваются, сушатся, при необходимости измельчаются, смешиваются до полностью однородной порошкообразной шихты, которая подаётся в стекловаренную печь.

  Процесс стекловарения условно разделяют на несколько стадий: силикатообразование, стеклообразование, осветление, гомогенизацию и охлаждение («студку»).

  При нагревании шихты вначале испаряется гигроскопическая и химически связанная вода. На стадии силикатообразования происходит термическое разложение компонентов, реакции в твёрдой и жидкой фазе с образованием силикатов, которые вначале представляют собой спекшийся конгломерат, включающий и не вступившие в реакцию компоненты. По мере повышения температуры отдельные силикаты плавятся и, растворяясь друг в друге, образуют непрозрачный расплав, содержащий значительное количество газов и частицы компонентов шихты. Стадия силикатообразования завершается при 1100—1200 °С.

  На стадии стеклообразования растворяются остатки шихты и удаляется пена — расплав становится прозрачным; стадия совмещается с конечным этапом силикатообразования и протекает при температуре 1150—1200 °С. Собственно стеклообразованием называют процесс растворения остаточных зёрен кварца в силикатном расплаве, в результате чего образуется относительно однородная стекломасса. В обычных силикатных С. содержится около 25% кремнезёма, химически не связанного в силикаты (только такое С. оказывается пригодным по своей химической стойкости для практического использования). Стеклообразование протекает значительно медленнее, чем силикатообразование, оно составляет около 90% от времени, затраченного на провар шихты и около 30% от общей длительности стекловарения.

  Обычная стекольная шихта содержит около 18% химически связанных газов (СО2, SO2, O2 и др.). В процессе провара шихты эти газы в основном удаляются, однако часть их остаётся в стекломассе, образуя крупные и мелкие пузыри.

  На стадии осветления при длительной выдержке при температуре 1500—1600 °С уменьшается степень пересыщения стекломассы газами, в результате чего пузырьки больших размеров поднимаются на поверхность стекл