Нормальная (жорданова) форма матриц
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Нормальная (жорданова) форма матриц

Нормальная (жорданова) форма матриц. С каждой квадратной матрицей   связан целый класс матриц, подобных матрице А. В этом классе всегда существует матрица, имеющая специальную нормальную (или каноническую) жорданову форму [термин «Н. (ж.) ф. м.» связан с именем К. Жордана]. На схеме показана жорданова форма некоторой матрицы 8-го порядка:

   (1)

  Вдоль главной диагонали расположены специальные квадратные клетки (на схеме они обведены пунктиром). Все элементы матрицы, расположенные вне этих клеток, равны нулю. В каждой диагональной клетке вдоль главной диагонали повторяется одно и то же (комплексное) число (в первой клетке l1, во второй l2 и т.д.); параллельный ряд над главной диагональю состоит из единиц. Все же остальные элементы в диагональных клетках равны нулю. На приведённой схеме имеются три диагональные клетки, из которых первая имеет порядок 4, вторая и третья — порядок 2. В общем же случае число клеток и порядки их могут быть любыми. Среди чисел l1, l2,... возможны и равные. Исходная матрица А в указанном примере имеет следующие элементарные делители: (l — l1)4, (l — l2)2, (l — l3)2. По элементарным делителям матрицы однозначно определяется её жорданова форма.

  Если матрица А имеет жорданову форму I, то существует неособенная матрица Т такая, что А = TIT-1. Замену матрицы А подобной ей матрицей I называют приведением матрицы А к нормальной жордановой форме.

  Представление о применениях жордановой формы матрицы можно получить на примере системы линейных дифференциальных уравнений с постоянными коэффициентами:

……………………………………….

  в матричной записи:

 

Введём новые неизвестные функции y1, у2,... yn при помощи неособенной матрицы  [tik - числа (i, k = 1, 2, …, n)]:

  ,

,

…………………………………….

;

  в матричной записи:

  х = Ту.

  Подставляя это выражение для x в (2), получим:

 

  где матрица I связана с матрицей А равенством:

  А=TIT-1.

  Обычно матрицу Т подбирают так, чтобы матрица А имела жорданову форму. В этом случае система уравнений (3) значительно проще системы (2). Так, например, при n = 8, если матрица  имеет жорданову форму (1), то система (3) будет иметь вид:

  , ,

, ,

, ,

, .

Интегрирование такой системы сводится к многократному интегрированию одного дифференциального уравнения.

  Лит. см.(смотри) при ст. Матрица.

Жорданова форма некоторой матрицы 8-го порядка (1).