Выравнивание в статистике, метод, при помощи которого получают аналитическое и графическое выражение статистической закономерности, лежащей в основе заданного эмпирического ряда статистических данных. Путём В. ломаную линию уровней эмпирического ряда заменяют плавной «выравнивающей» кривой (в частном случае — прямой) и вычисляют уравнение этой кривой. При В. последовательно решают три задачи: выбирают тип уравнения (форму плавной кривой); вычисляют параметры (коэффициенты) этого уравнения; вычисляют (на основании уравнения) или измеряют (по графику кривой) уровни (ординаты) полученного «теоретического» статистического ряда. Тип уравнения и, соответственно, форму плавной кривой выбирают на основании общих сведений (или часто — из практического опыта) о сущности явления, о закономерностях его структуры и развития, о зависимости между его признаками и т.д. (так называемое «аналитическое» В.); при отсутствии таких предварительных сведений тип уравнения (форму кривой) часто может подсказать графическая форма ломаной, выражающей заданный эмпирический ряд.
В социально-экономической статистике В. применяют в трёх типичных случаях: 1) В. рядов распределений; 2) В. ломаных линий регрессии; 3) В. рядов динамики. Цель В. рядов распределения — количественно и графически выразить характер закономерности распределения единиц совокупности по данному признаку (например, их нормальное распределение, распределение по закону Пуассона и т.п.). При этом сохраняют равенство некоторых главных числовых характеристик заданного эмпирического и получаемого теоретического рядов: средней величины признака, среднего квадратического отклонения, общей численности единиц совокупности. Степень совокупного соответствия уровней (ординат) полученного теоретического ряда уровням эмпирическим выясняют при помощи какого-либо критерия согласия. В некоторых особых случаях — например, при В. распределения населения по возрасту, показанному при переписи, для устранения хорошо известной «аккумуляции возрастов», оканчивающихся на 0 или на 5, — применяют специально разработанные способы и формулы. В. распределений всегда предполагает наличие достаточно многочисленного заданного эмпирического ряда данных. В. ломаных линий регрессии производят при изучении связей признаков, чтобы получить плавную линию регрессии и уравнение регрессии (корреляционное), выражающее зависимость средних значений одного признака от значений других, например: и т.п. К В. рядов динамики прибегают, чтобы получить уравнение (и плавную линию), выражающее тенденцию развития процесса во времени (t), например: y = a + bt, y = a + bt + ct2 и т.п. В обоих последних случаях В. коэффициенты а, в, с,... искомого уравнения обычно вычисляют по наименьших квадратов методу. Не следует смешивать В. статистических рядов динамики со сглаживанием статистических рядов.
Лит.: Хёнтингтон Е. В., Выравнивание кривых по способу наименьших квадратов и способу моментов, в кн.: математические методы в статистике. Сб. статей, под ред. Г. Л. Ритца. Пер. и обраб. С. П. Боброва, М., 1927, с. 147—61; Ежов А. И., Выравнивание и вычисление рядов распределений, М., 1961; Хотимский В. И., Выравнивание статистических рядов по методу наименьших квадратов (способ Чебышева), М. — Л., 1925, 2 изд., М., 1959; Четвериков Н. С., О технике вычисления параболических кривых, в сб.(сборник): Вопросы конъюнктуры, т. 2, М., 1926; переизд. в его кн.: Статистические и схоластические исследования, М., 1963, с. 190—210; Ястремский Б. С., Некоторые вопросы математической статистики, М., 1961, гл.(глав) II; Обухов В. М., К вопросу о нахождении уравнения регрессии, удовлетворяющего данному эмпирическому ряду, «Труды ЦСУ», т. 16, в. II, М., 1923.