Эволюта и эвольвента
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Эволюта и эвольвента

Эволюта и эвольвента (от лат.(латинский) evolutus — развёрнутый и evolvens, род.(родился) падеж evolventis — разворачивающий), понятия дифференциальной геометрии: множество m центров кривизны плоской кривой l называется эволютой этой кривой; кривая l по отношению к своей эволюте называется эвольвентой (см. рис.). Эвольвента l кривой m может быть получена как траектория конца В нити AB, которая наматывается на линию m или разматывается с неё (этим построением эвольвенты и объясняется др. её назв.(название) «развёртка»). Указанное построение эвольвенты делает ясным следующие свойства Э. и э.: 1) касательная CD в произвольной точке С эволюты является нормалью в соответствующей точке D эвольвенты (следовательно, эвольвента есть ортогональная траектория касательных эволюты); 2) всякая ортогональная траектория касательных кривой т является эвольвентой (поэтому у данной кривой бесконечно много эвольвент); 3) разность радиусов кривизны AB и CD в точках В и D эвольвенты равна длине дуги AC эволюты; 4) эволюта является огибающей семейства нормалей эвольвенты.

  Если линия l задана параметрическими уравнениями х = x (t), y = y (t), то параметрические уравнения её эволюты будут следующие:

,

  Эвольвенту пространственной кривой можно определить как ортогональную траекторию касательных этой кривой.

  Лит.: Рашевский П. К., Курс дифференциальной геометрии, 4 изд., М., 1956.

Рис. к ст. Эволюта и эвольвента.