Френе формулы
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Френе формулы

Френе формулы, формулы, дающие разложение производных (по дуге) единичных векторов касательной t, нормали n и бинормали b произвольной кривой L по векторам t, n, b. Если k и s — кривизна и кручение L, то Ф. ф. имеют вид

, , .

  С помощью Ф. ф. исследуются дифференциально-геометрические свойства кривых линий, в кинематике — движение материальной точки по криволинейной траектории.

  Ф. ф. опубликованы в 1852 французским математиком Ф. Френе (F. Frenet), но были известны ему ещё в 1847; впервые же они были опубликованы в 1851 французским математиком Ж. Серре (J. Serret), почему их иногда называют формулами Серре — Френе.