Умножение
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Умножение

Умножение, операция образования по двум данным объектам а и b, называемым сомножителями, третьего объекта с, называемого произведением. У. обозначается знаком Х (ввёл англ.(английский) математик У. Оутред в 1631) или • (ввёл нем.(немецкий) учёный Г. Лейбниц в 1698); в буквенном обозначении эти знаки опускаются и вместо а ´ b или а b пишут ab. У. имеет различный конкретный смысл и соответственно различные конкретные определения в зависимости от конкретного вида сомножителей и произведения. У. целых положительных чисел есть, по определению, действие, относящее числам а и b третье число с, равное сумме b слагаемых, каждое из которых равно а, так что ab = а + а +... + а (b слагаемых). Число а называется множимым, b – множителем. У. дробных чисел  и  определяется равенством  (см. Дробь). У. рациональных чисел даёт число, абсолютная величина которого равна произведению абсолютных величин сомножителей, имеющее знак плюс (+), если оба сомножителя одинакового знака, и знак минус (–), если они разного знака. У. иррациональных чисел определяется при помощи У. их рациональных приближений. У. комплексных чисел, заданных в форме a = а + bi и b = с + di, определяется равенством ab = acbd + (ad + bc) i. При У. комплексных чисел, записанных в тригонометрической форме:

  a = r1 (cosj1 + isin j1),

  b = r2 (cosj2 + isin j2),

  их модули перемножаются, а аргументы складываются:

  ab = r1r2{cos (j1 + j2) + i sin ((j1 + j2)}.

  У. чисел однозначно и обладает следующими свойствами:

  1) ab = ba (коммутативность, переместительный закон);

  2) a (bc) = (ab) c (ассоциативность, сочетательный закон);

  3) a (b + c) = ab + ac (дистрибутивность, распределительный закон). При этом всегда а ×0 = 0; 1 = а. Указанные свойства лежат в основе обычной техники У. многозначных чисел.

  Дальнейшее обобщение понятия У. связано с возможностью рассматривать числа как операторы в совокупности векторов на плоскости. Например, комплексному числу r (cosj + i sin j) соответствует оператор растяжения всех векторов в r раз и поворота их на угол j вокруг начала координат. При этом У. комплексных чисел отвечает У. соответствующих операторов, т. е. результатом У. будет оператор, получающийся последовательным применением двух данных операторов. Такое определение У. операторов переносится и на другие виды операторов, которые уже нельзя выразить при помощи чисел (например, линейные преобразования). Это приводит к операциям У. матриц, кватернионов, рассматриваемых как операторы поворота и растяжения в трёхмерном пространстве, ядер интегральных операторов и т.д. При таких обобщениях могут оказаться невыполненными некоторые из перечисленных выше свойств У., чаще всего – свойство коммутативности (некоммутативная алгебра). Изучение общих свойств операции У. входит в задачи общей алгебры, в частности теории групп и колец.