Тепловая труба, теплопередающее устройство, способное передавать большие тепловые мощности при малых градиентах температуры. Т. т. представляет собой герметизированную конструкцию (трубу), частично заполненную жидким теплоносителем (рис.). В нагреваемой части Т. т. (в зоне нагрева, или испарения) жидкий теплоноситель испаряется с поглощением теплоты, а в охлаждаемой части Т. т. (в зоне охлаждения, или конденсации) пар, перетекающий из зоны испарения, конденсируется с выделением теплоты. Движение пара от зоны испарения к зоне конденсации происходит за счёт разности давлений насыщенного пара, определяемой разностью температур в зонах испарения и конденсации. Возвращение жидкости в зону испарения осуществляется либо за счёт внешних воздействий (например, силы тяжести), либо под действием капиллярной разности давлений по капиллярной структуре (фитилю), расположенной внутри Т. т. (чаще всего на её стенках). В связи с тем, что Т. т. с капиллярной структурой для возврата жидкости могут работать независимо от ориентации в поле тяжести и в невесомости, наиболее распространён именно этот тип Т. т. Эффективная теплопроводность Т. т. (отношение плотности теплового потока через Т. т. к падению температуры на единицу длины трубы) в десятки тысяч раз больше, чем теплопроводность Cu, Ag или Al, и достигает ~107вт/м К). Малый вес, высокая надёжность и автономность работы Т. т., большая эффективная теплопроводность, возможность использования в качестве термостатирующего устройства обусловили применение Т. т. в энергетике, химической технологии, космической технике, электронике и ряде других областей техники.
Лит.: Елисеев В. Б.. Сергеев Д. И.. Что такое тепловая труба?. М., 1971; Тепловые трубы. Сб., пер.(перевод) с англ.(английский) и нем.(немецкий). под ред. Э. Э. Шпильрайна. М.. 1972.