Существенно особая точка
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Существенно особая точка

Существенно особая точка аналитической функции, точка z0 комплексной плоскости, в которой не существует ни конечного, ни бесконечного предела при z ® z0 для функции, однозначной и аналитической в некоторой окрестности этой точки (см. Аналитические функции). Примеры: точка z = 0 является С. о. т. для функции , ,  и т. д. В окрестности С. о. т. z0 функция f (z) может быть разложена в Лорана ряд

,

причём среди чисел b1, b2,... бесконечно много отличных от нуля. Это свойство часто используется для определения С. о. т. О поведении функции в окрестности С. о. т. позволяет судить Сохоцкого-Вейерштрасса теорема. Обобщением этой теоремы служит большая теорема Пикара: во всякой окрестности С. о. т. аналитическая функция принимает любое комплексное значение, кроме, быть может, одного. Последняя теорема, в свою очередь, имеет ряд обобщений и уточнений. В некоторых отделах теории аналитических функций под С. о. т. понимают также особые точки более сложной природы.

  Лит.: Маркушевич А. И., Теория. аналитических функций, 2 изд., т. 1—2, М., 1967—68; Неванлинна Р., Однозначные аналитические функции, пер.(перевод) с нем.(немецкий), М.- Л., 1941.