Спектральный анализ рентгеновский
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Спектральный анализ рентгеновский

Спектральный анализ рентгеновский, элементный анализ вещественного состава материалов по их рентгеновским спектрам. Качеств. С. а. р. выполняют по спектральному положению характеристических линий в спектре испускания исследуемого образца, его основой является Мозли закон; количественный С. а. р. осуществляют по интенсивностям этих линий. Методами С. а. р. могут быть определены все элементы с атомным номером Z ³ 12 (в некоторых случаях — и более лёгкие). Порог чувствительности С. а. р. в большинстве случаев ~ 10-2—10-4 %, продолжительность его (вместе с подготовкой пробы) несколько мин. С. а. р. не разрушает пробу.

  Наиболее распространённый вид С. а. р. — анализ валового состава материалов по их флуоресцентному рентгеновскому излучению. Выполняется он по относительной интенсивности линий, которая измеряется с высокой точностью спектральной аппаратурой рентгеновской. Относительная точность количественного С. а. р. колеблется от 0,3 до 10% в зависимости от состава пробы; на интенсивность аналитической линии каждого элемента влияют все остальные элементы пробы. Поэтому одной и той же измеренной интенсивности I1 аналитической линии i могут соответствовать различные концентрации C1, C2, С3, ... определяемого элемента (см. рис.) в зависимости от наполнителя — состава пробы за исключением определяемого элемента. Вследствие этого т. н. вырождения интенсивности по концентрации С. а. р. возможен лишь на основе общей теории зависимости li от концентраций всех n компонентов пробы — системы n уравнений связи.

  На основе общей теории анализа разработано несколько частных методов. При отсутствии в пробе мешающих элементов можно применять простейший из них — метод внешнего стандарта: измерив интенсивность аналитической линии пробы, по аналитическому графику образца известного состава (стандарта) находят концентрацию исследуемого элемента. Для многокомпонентных проб иногда применяют метод внутреннего стандарта, в котором ординатой аналитического графика служит отношение интенсивностей линий определяемого элемента и внутреннего стандарта — добавленного в пробу в известном количестве элемента, соседнего (в периодической системе элементов) с определяемым. Во многих случаях успешно применяют метод добавок в пробу в известном количестве определяемого элемента или наполнителя. По изменению интенсивности аналитической линии можно найти первоначальную концентрацию определяемого элемента.

  В промышленности применяют метод стандарта-фона, в котором ординатой аналитического графика является отношение интенсивности аналитической линии флуоресцентного излучения образца и близкой к ней линии первичного рентгеновского излучения, рассеянного пробой. Это отношение во многих случаях мало зависит от состава наполнителя. Для анализа сложных многокомпонентных проб полную систему уравнений связи расшифровывают на ЭВМ(электронная вычислительная машина) по методу последовательных (обычно трёх-четырёх) приближений.

  С. а. р. валового состава нашёл применение на обогатительных фабриках цветной металлургии — для контрольных целей и для экспрессного анализа; на металлургических заводах — для определения потерь металла в шлаках, маркировки сплавов сложного состава, контроля состава латуней в процессе плавки и т. д.; на цементных заводах — для контроля состава цементно-сырьевых смесей. Валовый С. а. р. применяется также для силикатного анализа.

  Рентгеновский микроанализ (локальный анализ) участков пробы ~ 1—3 мкм2 (т. е. меньше размеров зерна сплава) выполняют с помощью электронно-зондового микроанализатора по рентгеновскому спектру исследуемого участка. Он требует точного введения поправок на атомный номер определяемого элемента, поглощение его излучения в пробе и его флуоресценцию, возбуждаемую тормозной компонентой излучения и характеристическим излучением др. элементов пробы.

  Микроанализ применяют при исследовании взаимной диффузии двух- и трёх-компонентных систем; процессов кристаллизации (по дендритной ликвации, сегрегации примесных атомов на дислокациях основного компонента, концентрации некоторых фаз на границе зёрен); локальных флуктуаций состава плохо гомогенизированных сплавов и пр.

  Лит.: Блохин М. А., Методы рентгено-спектральных исследований, М., 1959; Блохин М. А., Ильин Н. П., Рентгеноспектральный анализ, «Журнал аналитической химии», 1967, т. 22, в. 11; Лосев Н. Ф., Количественный рентгеноспектральный флуоресцентный анализ, М., 1969; Плотников Р. И., Пшеничный Г. А.,

флюоресцентный рентгенорадиометрический анализ, М., 1973; Бирке Л. С., Рентгеновский микроанализ с помощью электронного зонда, пер.(перевод) с англ.(английский), М., 1966; Физические основы рентгеноспектрального локального анализа, пер.(перевод) с англ.(английский), М., 1973; Электронно-зондовый микроанализ, пер.(перевод) с англ.(английский), М., 1974.

  М. А. Блохин.

Графики зависимости интенсивности li аналитич. линии i от концентрации С определяемого элемента (аналитические графики) для случаев, когда поглощение наполнителя меньше (1), равно (2) или больше (3) поглощения определяемого элемента, Iф — интенсивность фона.