Сопряженные операторы
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Сопряженные операторы

Сопряжённые операторы, понятие операторов теории. Два ограниченных линейных оператора Т и Т* в гильбертовом пространстве называются сопряжёнными, если для всех векторов х и у из Н справедливо соотношение (Tx, у) =(х, Т*у). Например, если

,

то оператору

 

  сопряжён оператор

,

  где функция, комплексно сопряжённая с К (х, у). Если оператор Т не ограничен и его область определения Dm всюду плотна (см. Плотные и неплотные множества), то С. о. определяется на множестве тех векторов у, для которых можно найти такой вектор у*, что равенство (Tx, у) = (х, у*) справедливо для всех х Î Dm, при этом полагают Т*у = у*. Понятие сопряженности обобщается также на операторы в др. пространствах.