Соизмеримые и несоизмеримые величины
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Соизмеримые и несоизмеримые величины

Соизмеримые и несоизмеримые величины, две однородные величины (например, длины или площади), обладающие или, соответственно, не обладающие т. н. общей мерой (так называют величину той же природы, что и рассматриваемые величины, и содержащуюся целое число раз в каждой из них). Примерами несоизмеримых величин могут служить длины диагонали и стороны квадрата или площади круга и квадрата, построенного на радиусе. Если величины соизмеримы, то их отношение выражается рациональным числом, отношение же несоизмеримых величин — иррациональным (см. Иррациональное число). Поэтому, если в совокупности однородных величин принять одну за единицу, то величины, соизмеримые с ней, будут выражаться рациональными, а величины несоизмеримые — иррациональными числами. Открытие несоизмеримых величин составляет одну из важнейших заслуг древнегреческой математики.