Пуассона формула суммирования
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Пуассона формула суммирования

Пуассона формула суммирования, формула для вычисления суммы ряда вида

Если

Фурье преобразование (несколько иначе, чем обычно, нормированное) функции F (x), то

(m и n — целые). Это и есть П. ф. с.; она может быть записана в более общем виде: если l > 0, m > 0, lm = 1 и 0 £ t < 1, то

  Для справедливости этой формулы достаточно, чтобы в каждом конечном интервале F (x) имела ограниченную вариацию, и для х ® + ¥ и х ® ¥ выполнялось одно из условий: 1) F (x)монотонна и абсолютно интегрируема; 2) F (x) — интегрируема и обладает абсолютно интегрируемой производной. П. ф. с. позволяет в ряде случаев заменить вычисление суммы ряда вычислением суммы др. ряда, сходящегося быстрее первоначального.