Пороха
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Пороха

Пороха, твёрдые (конденсированные) уплотнённые смеси взрывчатых веществ, способные к протеканию в узкой зоне самораспространяющихся экзотермических реакций с образованием главным образом газообразных продуктов. Горение П. происходит параллельными слоями в направлении, перпендикулярном к поверхности горения, и обусловлено передачей тепла от слоя к слою. В отличие от др. взрывчатых веществ, горение П. (благодаря исключению возможности проникновения продуктов горения внутрь вещества) устойчиво в широком интервале внешних давлений (0,1—1000 Мн/м2). Горение параллельными слоями позволяет регулировать суммарную скорость газообразования по времени размерами и формой пороховых элементов (как правило, трубки различной длины или диаметра с одним или несколькими каналами). Скорость горения П. зависит от состава, начальной температуры и давления.

  Различают два типа П.: пластифицированные системы на основе нитроцеллюлозы (бездымные пороха), которые делятся на пироксилиновые пороха, кордиты и баллиститы; гетерогенные системы, состоящие из горючего и окислителя (смесевые пороха), в том числе дымный порох.

  П. применяются в огнестрельном оружии для сообщения снаряду необходимой скорости. П., используемые в ракетных двигателях, называют твёрдым ракетным топливом. Смесевые П. — в основном термореактивные высоконаполненные полимерные системы с существенно меньшей (чем у баллистных П.) зависимостью физико-механических характеристик от температуры. Современные смесевые П. содержат примерно 60—70% перхлората аммония (окислитель), 15—20% полимерного связующего (горючее), 10—20% порошкообразного алюминия и др. добавки. Смесевые П. как твёрдые ракетные топлива обладают рядом преимуществ перед баллистными П.: более высокой удельной тягой, меньшей зависимостью скорости горения от давления и температуры, большим диапазоном регулирования скорости горения при помощи различных присадок, возможностью регулирования физико-механических характеристик. Благодаря высоким эластическим свойствам смесевых П. можно изготовлять заряды жесткоскреплёнными со стенкой двигателя, что резко увеличивает коэффициент наполнения твёрдым ракетным топливом двигательные установки.

  Раньше всех был применен дымный П., место и время изобретения которого точно не установлены. Наиболее вероятно, что он появился в Китае, а затем стал известен арабам. Дымный П. начали применять в Европе (в т. ч. и в России) в 13 в.; до середины 19 в. он оставался единственным взрывчатым веществом для горных работ и до конца 19 в. — метательным средством. В конце 19 в. в связи с изобретением т. н. бездымных П. дымный П. потерял своё значение. Пироксилиновый П. впервые был получен во Франции П. Вьелем в 1884, а в России в 1890 Д. И. Менделеевым (пироколлодийный П.) и группой инженеров Охтенского порохового завода (пироксилиновый П.) в 1890—91. Кордитный П. был впервые получен в Великобритании в конце 19 в., баллистный П. предложен в 1888 в Швеции А. Нобелем. Заряды из баллистных П. для ракетных снарядов впервые разработаны в СССР в 30-х гг. и успешно использовались советскими войсками в период Великой Отечественной войны 1941—45 (гвардейские миномёты «Катюша»). Смесевые П. нового состава и заряды из них для реактивных двигателей были созданы во 2-й половине 40-х гг. сначала в США, а затем и др. странах.

  Лит.: Серебряков М. Е., Внутренняя баллистика, 2 изд., М., 1949; Корнер Д ж., Внутренняя баллистика орудий, пер.(перевод) с англ.(английский), М., 1953; Паушкин Я. М., Химия реактивных топлив, М., 1962; Сарнер С., Химия ракетных топлив, пер.(перевод) с англ.(английский), М., 1969.

  Г. К. Клименко.