Положительная логика
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Положительная логика

Положительная логика, логика, в которой приемлемыми считаются только рассуждения, не связанные с опровержениями, т. е. с обоснованиями ложности высказываний. Поскольку выражение «А — ложно» есть лишь иная форма выражения «не-А», в П. л. отказываются от любых способов введения отрицания, к числу которых относятся приёмы косвенных доказательств, в том числе доказательств от противного, а также явные определения отрицания типа ù А = dfA (f, где ù знак отрицания, É — импликация, а f — пропозициональная переменная или какое-либо «допустимое» абсурдное утверждение. П. л. можно назвать, таким образом, логикой без отрицания.

  Логические законы, соответствующие правильным рассуждениям в П. л. (или же правила, кодифицирующие способы таких рассуждений), описываются и каталогизируются в соответствующих логических исчислениях, из которых важнейшими являются положительное импликативное исчисление высказываний с единственной логической операцией импликацией, и полное положительное исчисление высказываний с конъюнкцией, дизъюнкцией, импликацией и эквиваленцией.

  Положительное импликативное исчисление высказываний (подробно об исчислении высказываний см.(смотри) в ст. Логика) задаётся с помощью двух аксиомных схем:

  1. А É (В É A),

  2. (A É (В É С)) É ((А É В) É (А É C)

  и правила modus ponens; полное положительное исчисление высказываний — добавлением к схемам (1) и (2) следующих:

  3. (А & В) É А,

  4. (A & В) É В,

  5. А É (В É (A & В)),

  6. (A É С) É ((B É С) É ((А Ú В) É C)),

  7. А É (A ÚB),

  8. В É (A Ú B)

и определения эквиваленции как сокращения для выражения (А É В) & (В É А). Более сильные логические исчисления получаются из исчислений П. л. последовательным неконсервативным расширением (усилением) их систем аксиом или правил вывода. Так, присоединение к (1) и (2) аксиомной схемы

  9. (А É В) É ((А Éù В) É ù А)

или соответствующего ей правила reductio ad absurdum даёт минимальную логику Колмогорова (1925), а аналогичное добавление к полному положительному исчислению высказываний — минимальную логику Иохансона (1936). Присоединяя: к последней схему

  10. ù А É (А É В)

(противоречие влечёт произвольное утверждение) и схему

  11. ù А (А

(исключенного третьего принцип), получают соответственно интуиционистскую и классическую логику высказываний.

  Поскольку все законы П. л. имеют силу (доказуемы) в интуиционистской и классической логике (обратное, естественно, неверно), положительные исчисления обычно рассматривают как их подсистемы — вообще как «частичные системы». Существенно, однако, что положительные исчисления, взятые «сами по себе», и «те же» исчисления «внутри» более сильной логики — это исчисления с различной семантикой логических связок (операций), которая для первых детерминируется только их собственными аксиомами или правилами употребления связок, а для вторых наследуется от более сильной логики.

  Лит.: Чёрч А., Введение в математическую логику, пер.(перевод) с англ.(английский), т. 1, М., 1960, § 26; Расёва Е., Сикорский Р., Математика метаматематики, пер.(перевод) с англ.(английский), М., 1972, гл.(глав) 1:1, §§ 2—6.

  М. М. Новосёлов.