Поле направлений
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Поле направлений

Поле направлений, совокупность точек плоскости хОу, в каждой из которых задано определённое направление, изображающееся обычно стрелкой (небольшим отрезком), проходящей через данную точку. Если дано уравнение y' = -f (x, у), то в каждой точке (х0, у0) некоторой области плоскости хОу известно значение углового коэффициента k = f (x0, y0) касательной к интегральной кривой, проходящей через эту точку; направление касательной можно изобразить стрелкой (небольшим отрезком). Таким образом, это дифференциальное уравнение определяет П. н.; наоборот, П. н., заданное в некоторой области плоскости хОу, определяет дифференциальное уравнение вида y' = f (x, y). Проводя достаточно густую сеть изоклин [линий одинакового наклона П. н. f (x, у) = С, где С — постоянная], можно приближённо построить семейство интегральных кривых как совокупность линий, имеющих в каждой своей точке направление, совпадающее с направлением поля (метод изоклин). На рис. изображено П. н. уравнения у' = х2 + у2; тонкие линии (окружности) — изоклины; жирные линии — интегральные кривые.

  Лит.: Степанов В. В., Курс дифференциальных уравнений, 8 изд., М., 1959; Петровский И. Г., Лекции по теории обыкновенных дифференциальных уравнений, 6 изд., М., 1970.

Рис. к ст. Поле направлений.