Непараметрические методы в математической статистике, методы непосредственной оценки теоретического распределения вероятностей и тех или иных его общих свойств (симметрии и т.п.) по результатам наблюдений. Название Н. м. подчёркивает их отличие от классических (параметрических) методов, в которых предполагается, что неизвестное теоретическое распределение принадлежит какому-либо семейству, зависящему от конечного числа параметров (например, семейству нормальных распределений), и которые позволяют по результатам наблюдений оценивать неизвестные значения этих параметров и проверять те или иные гипотезы относительно их значений. Разработка Н. м. является в значительной степени заслугой советских учёных.
В качестве примера Н. м. можно привести найденный А. Н. Колмогоровымспособ проверки согласованности теоретических и эмпирических распределений (так называемый критерий Колмогорова). Пусть результаты n независимых наблюдений некоторой величины имеют функцию распределения F (x) и пусть Fn (x) обозначает эмпирическую функцию распределения (см. Вариационный ряд), построенную по этим n наблюдениям, a Dn — наибольшее по абсолютной величине значение разности Fn (x) — F (x). Случайная величина
имеет в случае непрерывности F (x) функцию распределения Kn (l), не зависящую от F (x) и стремящуюся при безграничном возрастании n к пределу
Отсюда при достаточно больших n, для вероятности pn,l. Неравенства
получается приближённое выражение
pn,l » 1 - К (l). (*)
Функция К (l) табулирована. Её значения для некоторых А приведены в табл.
Таблица функции К (l)
l
0,57
0,71
0,83
1,02
1,36
1,63
К (l)
0,10
0,30
0,50
0,75
0,95
0,99
Равенство (*) следующим образом используется для проверки гипотезы о том, что наблюдаемая случайная величина имеет функцию распределения F (x): сначала по результатам наблюдений находят значение величины Dn, а затем по формуле (*) вычисляют вероятность получения отклонения Fn от F, большего или равного наблюдённому. Если указанная вероятность достаточно мала, то в соответствии с общими принципами проверки статистических гипотез (см. Статистическая проверка гипотез) проверяемую гипотезу отвергают. В противном случае считают, что результаты опыта не противоречат проверяемой гипотезе. Аналогично проверяется гипотеза о том, получены ли две независимые выборки, объёма n1 и n2 соответственно, из одной и той же генеральной совокупности с непрерывным законом распределения. При этом вместо формулы (*) пользуются тем, что вероятность неравенства
как это было установлено Н. В. Смирновым, имеет пределом К (l), здесь Dn1, n2есть наибольшее по абсолютной величине значение разности Fn1(х) — Fn2(х).
Другим примером Н. м. могут служить методы проверки гипотезы о том, что теоретическое распределение принадлежит к семейству нормальных распределений. Отметим здесь лишь один из этих методов — так называемый метод выпрямленной диаграммы. Этот метод основывается на следующем замечании. Если случайная величина Х имеет нормальное распределение с параметрами a и s, то
где Ф-1 — функция, обратная нормальной:
Т. о., график функции у = Ф-1[F (x)]будет в этом случае прямой линией, а график функции у = Ф-1[Fn (x)] — ломаной линией, близкой к этой прямой (см. рис.). Степень близости и служит критерием для проверки гипотезы нормальности распределения F (x).
Лит.: Смирнов Н. В., Дунин-Барковский И. В., Курс теории вероятностей и математической статистики для технических приложений, 3 изд., М., 1969; Большее Л. Н., Смирнов Н. В., Таблицы математической статистики, М., 1968.