Мультиплетность (от лат.(латинский) multiplex — многократный), число возможных ориентаций в пространстве полного спина атома или молекулы. Согласно квантовой механике, М. c = 2S + 1, где S — спиновое квантовое число. Для систем с нечётным числом N электронов S = 1/2; 3/2; 5/2,... и М. чётная (c = 2, 4, 6,...). Для них возможны дублетные, квартетные, секстетные и т. д. квантовые состояния. Если N чётно, S = 0, 1, 2,... и М. нечётная (c = 1, 3, 5,...) — возможны синглетные, триплетные, квинтетные и т. д. состояния. Так, для систем с 1 электроном (атом Н, ион H2+, S = 1/2, c = 2) получаются лишь дублетные состояния; с 2 электронами (атом Не, молекула H2) — синглетные состояния (S = 0, c = 1, спины электронов антипараллельны) и триплетные состояния (S = 1, c = 3, спины электронов параллельны). Для N электронов максимальная М. (c = N + 1) соответствует параллельному направлению их спинов.
М. определяет кратность вырождения уровней атома или молекулы. 2S + 1 квантовых состояний, соответствующих уровню энергии с заданным S, отличаются значениями проекции полного спина и характеризуются квантовым числом Ms = S, S — 1,..., —S, определяющим величину этой проекции. Вследствие спин-орбитального взаимодействия уровень энергии может расщепиться на c = 2S + 1 подуровней (мультиплетное расщепление, приводящее к расщеплению спектральных линий, см.(смотри) Тонкая структура).
Значения М. для квантовых состояний атомов и молекул определяются электронами в незамкнутых оболочках, т. к. в заполненных оболочках спины электронов компенсируются. Для уровней энергии щелочных металлов с 1 внешним электроном c = 2, как и для атома Н; для уровней энергии сложных атомов с заполняющимися p-, d- и f-оболочками М. могут быть высокими (до 11). Для химически устойчивых молекул, имеющих, как правило, чётное число электронов, характерны М. c = 1 для основного и c = 1 и 3 для возбуждённых уровней энергии; для свободных радикалов с одним электроном с некомпенсированным спином типична М. c = 2.