Металлооптика, раздел оптики, в котором изучается взаимодействие металлов с электромагнитными волнами. Основные оптические особенности металлов: большой коэффициент отражения R (например, у щелочных металлов R ~ 99%) в широком диапазоне длин волн и большой коэффициент поглощения (электромагнитная волна внутри металла затухает, пройдя слой толщиной d ~ 0,1¸1×10-5см, см. Скин-эффект). Эти особенности связаны с высокой концентрацией в металле электронов проводимости (см. Металлы).
Взаимодействуя с электромагнитной волной, падающей на поверхность металла. электроны проводимости одновременно взаимодействуют с колеблющимися ионами решётки. Основная часть энергии, приобретённой ими от электромагнитного поля, излучается в виде вторичных волн, которые, складываясь, создают отражённую волну. Часть энергии, передаваемая решётке, приводит к затуханию волны внутри металла. Электроны проводимости могут поглощать сколь угодно малые кванты электромагнитной энергии ћw (ћ — Планка постоянная, w — частота излучения). Поэтому они дают вклад в оптические свойства металла при всех частотах. Особенно велик их вклад в радиочастотной и инфракрасной областях спектра. По мере увеличения w вклад электронов проводимости в оптические свойства металлов уменьшается, уменьшается и различие между металлами и диэлектриками.
Остальные валентные электроны влияют на оптические свойства металла только когда они участвуют во внутреннем фотоэффекте, что происходит при ћw ³ DE (DE — энергетическая щель между основным и возбуждённым состояниями электронов). Возбуждение электронов приводит к аномальной дисперсии волн и к полосе поглощения с максимумом вблизи частоты резонансного поглощения. Благодаря сильному электрон-электронному и электрон-ионному взаимодействию полосы поглощения в металле значительно шире, чем в диэлектрике. Обычно у металлов наблюдается несколько полос, расположенных главным образом в видимой и ближней ультрафиолетовой областях спектра. Однако для ряда поливалентных металлов наблюдаются полосы и в инфракрасной области спектра. При частотах w ³ wп, где wп — плазменная частота валентных электронов, в металле возбуждаются плазменные колебания электронов. Они приводят к появлению области прозрачности при w » wп.
В ультрафиолетовой области коэффициент отражения R падает и металлы по своим свойствам приближаются к диэлектрикам. При ещё больших частотах (рентгеновская область) оптические свойства определяются электронами внутренних оболочек атомов и металлы по оптическим свойствам не отличаются от диэлектриков.
где e' — вещественная диэлектрическая проницаемость, s — проводимость металла, или комплексным показателем преломления:
(k — показатель поглощения). Комплексность показателя преломления выражает экспоненциальное затухание волны внутри металла. При падении плоской волны на поверхность металла под углом j ¹ 0 волна внутри металла будет неоднородной. Плоскость равных амплитуд параллельна поверхности металла, плоскость равных фаз наклонена к ней под углом, величина которого зависит от j. Волны, отражённые от поверхности металла, поляризованные в плоскости падения и перпендикулярно к ней, имеют разность фаз. Благодаря этому плоскополяризованный свет после отражения становится эллиптически-поляризованным. Коэффициент отражения R волн, поляризованных в плоскости падения, у металлов, в отличие от диэлектриков, всегда ¹ 0, и лишь имеет минимум при определённом j.
Для чистых металлов при низкой температуре в длинноволновой области спектра длина свободного пробега электронов l становится > d. При этом затухание волны перестаёт быть экспоненциальным, хотя и остаётся очень сильным (аномальный скин-эффект). В этом случае комплексный показатель преломления теряет смысл и связь между падающей и преломленной волной становится более сложной. Однако свойства отражённого света при любом соотношении между l и d полностью определяются поверхностным импедансом Z, с которым связывают эффективные комплексные показатели поглощения и преломления:
nэф — ikэф = 4p/(cZ).
При l < d величины n и k в формулах заменяются на nэф и kэф.
Для измерения n и k массивного металлического образца исследуют свет, отражённый от его поверхности, либо поляризационными методами (измеряются характеристики эллиптической поляризации отражённого света), либо методами, основанными на измерении R (в широком спектральном диапазоне) при нормальном падении его на поверхность металла. Эти методы позволяют измерить оптические характеристики в инфракрасной, видимой и ультрафиолетовой областях с ошибкой ~0,5—2%. Для измерения тонкой структуры полос поглощения используются методы, основанные на модуляции свойств металла, приводящей к модуляции интенсивности отражённого света, которая и измеряется (термоотражение, пьезоотражение и т.п.). Указанные методы позволяют с большой точностью определить изменения R при изменении температуры, при деформации и т.п. (см. табл.), а также исследовать тонкую структуру полос поглощения. Особое внимание уделяется приготовлению поверхности исследуемых образцов. Поверхности нужного качества получаются электрополировкой или испарением металла в вакууме с последующим осаждением его на полированные подложки.
Оптические характеристики некоторых металлов
l = 0,5 мкм
l = 5,0 мкм
n
k
R %
n
k.
R %
Na*
0,05
2,61
99,8
—
—
-—
Cu
Ag
Au
1,06
0,11
0,50
2,70
2,94
2,04
63,2
95,5
68,8
3,1
2,4
3,3
32,8
34,0
35,2
98,9
99,2
98,95
Zn
—
—
—
3,8
26,2
97,9
Al
In
0,50
—
4,59
—
91,4
—
6,7
9,8
37,6
32,2
98,2
96,6
Sn
Pb
0,78
1,70
3,58
3,30
80,5
62,6
8,5
9,0
28,5
24,8
96,2
95,0
Ti
2,10
2,82
52,2
3,4
9,4
87,4
Nb
V
2,13
2,65
3,07
3,33
56,0
56,6
8,0
6,6
27,7
17,5
96,2
92,7
Mo
W
3,15
3,31
3,73
2,96
59,5
51,6
4,25
3,48
23,9
21,2
97,2
97,0
Fe
Co
Ni
1,46
1,56
1,54
3,17
3,43
3,10
63,7
65,9
61,6
4,2
4,3
4,95
12,5
14,6
18,5
90,8
92,9
94,8
Pt
1,76
3,59
65,7
7,6
20,2
93,7
* Оптические характеристики относятся к l = 0,5893 мкм.
М. позволяет по оптическим характеристикам, измеренным в широком спектральном диапазоне, определить основные характеристики электронов проводимости и электронов, участвующих во внутреннем фотоэффекте. М. имеет также и прикладное значение. Металлические зеркала применяются в различных приборах, при конструировании которых необходимо знание R, n и k в различных областях спектра. Измерение n и k позволяет также установить наличие на поверхности металла тонких плёнок (например, плёнки окиси) и определить их оптические характеристики.
Лит.: Соколов А. В., Оптические свойства металлов, М., 1961; Борн М., Вольф Э., Основы оптики, пер.(перевод) с англ.(английский), М., 1970; Гинзбург В. Л., Мотулевич Г. П., Оптические свойства металлов, «Успехи физических наук», 1955, т. 55, в. 4, с. 489; Мотулевич Г. П., Оптические свойства поливалентных непереходных металлов, там же, 1969, т. 97, в. 2, с. 211; Кринчик Г. С., Динамические эффекты электро- и пьезоотражения света кристаллами, там же, 1968, т. 94, в. 1, с. 143; Головашкин А. И., Металлооптика, в кн.: Физический энциклопедический словарь, т. 3, М., 1963.