Маятник, твёрдое тело, совершающее под действием приложенных сил колебания около неподвижной точки или оси. В физике под М. обычно понимают М., совершающий колебания под действием силы тяжести; при этом его ось не должна проходить через центр тяжести тела. Простейший М. состоит из небольшого массивного груза C, подвешенного на нити (или лёгком стержне) длиной l. Если считать нить нерастяжимой и пренебречь размерами груза по сравнению с длиной нити, а массой нити по сравнению с массой груза, то груз на нити можно рассматривать как материальную точку, находящуюся на неизменном расстоянии l от точки подвеса O (рис. 1, а). Такой М. называется математическим. Если же, как это обычно имеет место, колеблющееся тело нельзя рассматривать как материальную точку, то М. называется физическим.
Математический маятник. Если М., отклоненный от равновесного положения C0, отпустить без начальной скорости или сообщить точке C скорость, направленную перпендикулярно OC и лежащую в плоскости начального отклонения, то М. будет совершать колебания в одной вертикальной плоскости по дуге окружности (плоский, или круговой математический М.). В этом случае положение М. определяется одной координатой, например углом j, на который М. отклонен от положения равновесия. В общем случае колебания М. не являются гармоническими; их период T зависит от амплитуды. Если же отклонения М. малы, он совершает колебания, близкие к гармоническим, с периодом:
,
где g — ускорение свободного падения; в этом случае период T не зависит от амплитуды, то есть колебания изохронны.
Если отклонённому М. сообщить начальную скорость, не лежащую в плоскости начального отклонения, то точка C будет описывать на сфере радиуса l кривые, заключённые между 2 параллелями z = z1 и z = z2 (рис. 2, а), где значения z1 и z2 зависят от начальных условий (сферический маятник). В частном случае, при z1 = z2 (рис. 2, б) точка C будет описывать окружность в горизонтальной плоскости (конический маятник). Из некруговых М. особый интерес представляет циклоидальный маятник, колебания которого изохронны при любой величине амплитуды.
Физический маятник. Физическим М. обычно называется твёрдое тело, совершающее под действием силы тяжести колебания вокруг горизонтальной оси подвеса (рис. 1, б). Движение такого М. вполне аналогично движению кругового математического М. При малых углах отклонения j М. также совершает колебания, близкие к гармоническим, с периодом
,
где I — момент инерции М. относительно оси подвеса, l — расстояние от оси подвеса O до центра тяжести C, M — масса М. Следовательно, период колебаний физического М. совпадает с периодом колебаний такого математического М., который имеет длину l0 = I/Ml. Эта длина называется приведённой длиной данного физического М.
Точка K на продолжении прямой OC, находящаяся на расстоянии l0 от оси подвеса, называется центром качаний физ.(физический) М. При этом расстояние OK = l0всегда больше, чем OC = l. Точка O оси подвеса М. и центр качаний обладают свойством взаимности: если ось подвеса сделать проходящей через центр качаний, то точка O прежней оси подвеса станет новым центром качаний и период колебаний М. не изменится. Это свойство взаимности используется в оборотном маятнике для определения приведённой длины l0; зная l0 и T, можно найти значение g в данном месте.
Свойствами М. широко пользуются в различных приборах: в часах, в приборах для определения ускорения силы тяжести (см. Маятниковый прибор), ускорений движущихся тел, колебаний земной коры (см. Сейсмограф), в гироскопических устройствах, в приборах для экспериментального определения моментов инерции тел и других. См. также Фуко маятник.
Лит.: Бухгольц Н. Н., Основной курс теоретической механики, ч. 1, М., 1967, § 38, пп. 5, 13, 14; ч. 2, М., 1969, § 12, п. 4; Тарг С. М., Краткий курс теоретической механики, 7 изд., М., 1970, гл.(глав) 28, § 155; Хайкин С. Э., Физические основы механики, 2 изд., М., 1971, гл.(глав) 13, § 90, 91.