Малые выборки
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Малые выборки

Малые выборки, статистические выборки столь малого объёма n, что к ним нельзя применить простые классические формулы, действующие лишь асимптотически при n ® ¥. Особенности статистической оценки параметров по М. в. легче всего понять на примере нормального распределения (для которого малыми обычно считают выборки объёма n £ 30). Пусть необходимо оценить неизвестное среднее значение a выборки x1, x2, ..., xn из нормальной совокупности с неизвестной дисперсией s2. Обозначим

  ,

  .

  Исходным пунктом при оценке a служит то обстоятельство, что распределение вероятностей величины

 

  не зависит от а и s.

  Вероятность w неравенства — tw < t < tw и равносильного ему неравенства

      (1)

  вычисляется при этом по формуле

  w =  (2)

  где s(t, n — 1) есть плотность вероятности для так называемого Стьюдента распределения с n — 1 степенями свободы. Определяя для заданных n и w (0 < w < 1) соответствующее tw (что можно сделать, например, по таблицам), получают правило (1) нахождения доверительных границ для величины а, имеющей значимости уровень w.

  При больших n формула (2), связывающая w и tw, приближённо может быть заменена формулой

      (3)

  Эту формулу иногда неправильно применяют для определения tw при небольших n, что приводит к грубым ошибкам. Так, для w = 0,99 по формуле (3) находим t0,99 = 2,58; истинные значения t0,99 для малых n приведены в следующей таблице:

n

2

3

4

5

10

20

30

t0,99

63,66

9,92

5,84

4,60

3,25

2,86

2,76

Если пользоваться формулой (3) при n = 5, то получится вывод, что неравенство

 

выполняется с вероятностью 0,99. В действительности в случае пяти наблюдений вероятность этого неравенства равна лишь 0,94, а вероятностью 0,99 обладает в соответствии с приведённой таблицей неравенство

 

  Об оценке по М. в. теоретической дисперсии s2 см.(смотри) «Хи-квадрат» распределение. Разработаны также аналогичные методы оценки по М. в. параметров многомерных распределении (например, коэффициента корреляции).

 

  Лит.: Крамер Г., Математические методы статистики, перевод с английского, М., 1948; Колмогоров А. Н., Определение центра рассеивания и меры точности по ограниченному числу наблюдений, «Известия АН(Академия наук) СССР. Серия математическая», 1942, т. 6, № 1—2; Большев Л. Н., Смирнов Н. В., Таблицы математической статистики, М., 1965.

  Ю. В. Прохоров.