Ляпунова теорема
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Ляпунова теорема

Ляпунова теорема в теории вероятностей, теорема, устанавливающая некоторые весьма общие достаточные условия для сходимости распределения сумм независимых случайных величин к нормальному закону. Сформулирована и доказана А. М. Ляпуновым в 1901. Л. т. завершает исследования П. Л. Чебышева, А. А. Маркова (старшего) и самого А. М. Ляпунова в этом основном для всей теории вероятностей направлении. Точная формулировка Л. т. такова: пусть независимые случайные величины Xi,..., Xn, ... имеют конечные математические ожидания EXk, дисперсии DXk и при d > 0 абсолютные моменты  и пусть  — дисперсия суммы Xi,..., Xn. Утверждается, что, если при некотором d>0

 

(условие Ляпунова), то вероятность неравенства

 

стремится при n ® ¥ к пределу

   

равномерно относительно всех значений x1 и x2. Ляпунов дал также оценку скорости сходимости в Л. т. В дальнейшем были установлены условия, расширяющие условие Ляпунова и являющиеся не только достаточными, но в некотором смысле необходимыми. См. Предельные теоремы теории вероятностей.

  Лит.: Ляпунов А. М., Новая форма теоремы о пределе вероятности, Собрание сочинений, т. 1, М., 1954, с. 157; Бернштейн С. Н., Теория вероятностей, 4 изд., М. — Л., 1946, с. 275.

  А. В. Прохоров.