Лапласа теорема
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Лапласа теорема

Лапласа теорема, простейшая из предельных теорем теории вероятностей, относящаяся к распределению отклонений частоты появления события при независимых испытаниях от его вероятности. В общем виде эта теорема доказана П. Лапласом в книге «Аналитическая теория вероятностей» (1812). Один частный случай Л. т. был известен А. Муавру (1730), в связи с чем Л. т. иногда называется теоремой Муавра — Лапласа. Формулировка Л. т. такова. Пусть при каждом из n независимых испытаний вероятность появления некоторого события Е равна р (0<р<1) и пусть m обозначает число испытаний, в которых событие Е фактически наступает; тогда вероятность неравенства

 

  при достаточно большом числе испытаний n сколь угодно мало отличается от

  .

  Если обозначить через Xk случайную величину, принимающую значение, равное 1, при появлении события Е в k-ом испытании и значение, равное 0, при его непоявлении, то m представляется как сумма независимых случайных величин m = X1 + ...+ Xn. Это позволяет рассматривать Л. т. как частный случай более общих предельных теорем теории вероятностей, в частности Ляпунова теоремы.

  Приближённые значения вероятностей, даваемые Л. т., на практике используются как точные при npq порядка нескольких десятков и большем.

 

  Лит. см.(смотри) при ст. Предельные теоремы теории вероятностей.

  Ю. В. Прохоров.