Кеплера уравнение
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Кеплера уравнение

Кеплера уравнение, трансцендентное уравнение вида

  у—с siny=x.

  Для приложений важен случай | с | < 1, когда у определяется по заданным с и х единственным образом. К. у. впервые рассматривалось И. Кеплером («Новая астрономия», 1609) в связи с задачей: на диаметре АВ полукруга АОВМ дана точка D; провести прямую DM так, чтобы она делила площадь полукруга в заданном отношении (см. рис.). К. у. играет важную роль в астрономии при определении элементов эллиптических орбит планет. В небесной механике это уравнение обычно записывают в форме

  Е—е sin Е=М,

  где е — эксцентриситет эллипса, М — средняя аномалия, Е — эксцентрическая аномалия (см. Орбиты небесных тел). Решением К. у. занимались также Ж. Лагранж (1771), П. Лаплас (1823), Ф. Бессель (1816—17), К. Гаусс (1809) и др.

  Лит.: Субботин М. Ф. Курс небесной механики, 2 изд., т. 1, Л. — М., 1941.

 

Рис. к ст. Кеплера уравнение.