Касательная плоскость к поверхности S в точке М, плоскость, проходящая через точку М и характеризующаяся тем свойством, что расстояние от этой плоскости до переменной точки M' поверхности S при стремлении M' к М является бесконечно малым по сравнению с расстоянием MM'.Если поверхность S задана уравнением z = f (x, у), то уравнение К. п. в точке (x0, y0, z0), где z0 = f (x0, y0), имеет вид:
z — z0 = A (x — x0) + В (у — у0)
в том и только том случае, когда функция f (x, у) имеет в точке (x0, y0) полный дифференциал. В этом случае А и В суть значения частных производных и в точке (x0, y0) (см. Дифференциальное исчисление).