Измеримые функции
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Измеримые функции

Измеримые функции (в первоначальном понимании), функции f (x), обладающие тем свойством, что для любого t множество Et точек х, для которых f (x) £ t, измеримо по Лебегу (см. Мера множества). Это определение И. ф. принадлежит французскому математику А. Лебегу. Сумма, разность, произведение и частное двух И. ф., а также предел последовательности И. ф. снова являются И. ф. Таким образом, основные операции алгебры и анализа не выводят за пределы совокупности И. ф. Русские и советские математики внесли большой вклад в изучение И. ф. (Д. Ф. Егоров, Н. Н. Лузин и их ученики). Лузин доказал, что функция измерима в том и только том случае, если она может быть сделана непрерывной после изменения её значений на множестве сколь угодно малой меры. Это так называемое С-свойство И. ф.

  В абстрактной теории меры функция f (x) называется И. ф. по отношению к какой-либо мере m, если множество Et входит в область определения меры m. В современной теории вероятностей И. ф. выступают под названием случайных величин (см. Вероятностей теория).