Диффузия
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Диффузия

Диффузия (от лат.(латинский) diffusio — распространение, растекание), взаимное проникновение соприкасающихся веществ друг в друга вследствие теплового движения частиц вещества. Д. происходит в направлении падения концентрации вещества и ведёт к равномерному распределению вещества по всему занимаемому им объёму (к выравниванию химического потенциала вещества).

  Д. имеет место в газах, жидкостях и твёрдых телах, причём диффундировать могут как находящиеся в них частицы посторонних веществ, так и собственные частицы (самодиффузия).

  Д. крупных частиц, взвешенных в газе или жидкости (например, частиц дыма или суспензии), осуществляется благодаря их броуновскому движению. В дальнейшем, если специально не оговорено, имеется в виду молекулярная Д.

  Наиболее быстро Д. происходит в газах, медленнее в жидкостях, ещё медленнее в твёрдых телах, что обусловлено характером теплового движения частиц в этих средах. Траектория движения каждой частицы газа представляет собой ломаную линию, т.к. при столкновениях частицы меняют направление и скорость своего движения. Неупорядоченность движения приводит к тому, что каждая частица постепенно удаляется от места, где она находилась, причём её смещение по прямой гораздо меньше пути, пройденного по ломаной линии. Поэтому диффузионное проникновение значительно медленнее свободного движения (скорость диффузионного распространения запахов, например, много меньше скорости молекул). Смещение частицы меняется со временем случайным образом, но средний квадрат его `L2 за большое число столкновений растёт пропорционально времени t. Коэффициент пропорциональности D в соотношении: `L2 ~ Dt называется коэффициентом Д. Это соотношение, полученное А. Эйнштейном, справедливо для любых процессов Д. Для простейшего случая самодиффузии в газе коэффициент Д. может быть определён из соотношения D ~`L2/t, применённого к средней длине свободного пробега молекулы `l. Для газа `l =`сt, где `с — средняя скорость движения частиц, t — среднее время между столкновениями. Т. о., D ~ `l2/t ~ `l`c (более точно D = 1/3 `l`c). Коэффициент Д. обратно пропорционален давлению p газа (т.к. `l ~ 1/p); с ростом температуры Т (при постоянном объёме) Д. увеличивается пропорционально Т1/2 (т.к. `с ~ ÖТ). С увеличением молекулярной массы коэффициент Д. уменьшается.

  В жидкостях, в соответствии с характером теплового движения молекул, Д. осуществляется перескоками молекул из одного временного положения равновесия в другое. Каждый скачок происходит при сообщении молекуле энергии, достаточной для разрыва её связей с соседними молекулами и перехода в окружение др. молекул (в новое энергетически выгодное положение). В среднем скачок не превышает межмолекулярного расстояния. Диффузионное движение частиц в жидкости можно рассматривать как движение с трением, к нему применимо второе соотношение Эйнштейна: D ~ ukT. Здесь kБольцмана постоянная, u — подвижность диффундирующих частиц, т. е. коэффициент пропорциональности между скоростью частицы с и движущей силой F при стационарном движении с трением (с = uF). Если частицы сферически симметричны, то u = 1/6phr, где h — коэффициент вязкости жидкости, r — радиус частицы (см. Стокса закон).

  Коэффициент Д. в жидкости увеличивается с температурой, что обусловлено «разрыхлением» структуры жидкости при нагреве и соответствующим увеличением числа перескоков в единицу времени.

  В твёрдом теле могут действовать несколько механизмов Д.: обмен местами атомов с вакансиями (незанятыми узлами кристаллической решётки), перемещение атомов по междоузлиям, одновременное циклическое перемещение нескольких атомов, прямой обмен местами двух соседних атомов и т.д. Первый механизм преобладает, например, при образовании твёрдых растворов замещения, второй — твёрдых растворов внедрения.

  Коэффициент Д. в твёрдых телах крайне чувствителен к дефектам кристаллической решётки, возникшим при нагреве, напряжениях, деформациях и др. воздействиях. Увеличение числа дефектов (главном образом вакансий) облегчает перемещение атомов в твёрдом теле и приводит к росту коэффициента Д. Для коэффициента Д. в твёрдых телах характерна резкая (экспоненциальная) зависимость от температуры. Так, коэффициент Д. цинка в медь при повышении температуры от 20 до 300°С возрастает в 1014 раз.

  Значение коэффициента диффузии (при атмосферном давлении)

Диффундирующее вещество

Основной компонент

Температура, °С

Коэффициент диффузии, м2/сек

Водород (газ)

Кислород (газ)

0

0,70·10-4

Пары воды

Воздух

0

0,23·10-4

Пары этилового спирта

Воздух

0

0,10·10-4

Соль (NaCI)

Вода

20

1,1·10-9

Сахар

Вода

20

0,3·10-9

Золото (тв.)

Свинец (тв.)

20

4·10-14

Самодиффузия

Свинец

285

7·10-15

  Для большинства научных и практических задач существенно не диффузионное движение отдельных частиц, а происходящее от него выравнивание концентрации вещества в первоначально неоднородной среде. Из мест с высокой концентрацией уходит больше частиц, чем из мест с низкой концентрацией. Через единичную площадку в неоднородной среде проходит за единицу времени безвозвратный поток вещества в сторону меньшей концентрации — диффузионный поток j. Он равен разности между числами частиц, пересекающих площадку в том и др. направлениях, и потому пропорционален градиенту концентрации ÑС (уменьшению концентрации С на единицу длины). Эта зависимость выражается законом Фика (1855):

  j = -DÑC.

  Единицами потока j в Международной системе единиц являются 1/м2·сек или кг/м2·сек, градиента концентрации — 1/м4 или кг/м4, откуда единицей коэффициента Д. является м2/сек. Математически закон Фика аналогичен уравнению теплопроводности Фурье. В основе этих явлений лежит единый механизм молекулярного переноса: в 1-м случае переноса массы, во 2-м — энергии (см. Переноса явления).

  Д. возникает не только при наличии в среде градиента концентрации (или химического потенциала). Под действием внешнего электрического поля происходит Д. заряженных частиц (электродиффузия), действие поля тяжести или давления вызывает бародиффузию, в неравномерно нагретой среде возникает термодиффузия.

  Все экспериментальные методы определения коэффициента Д. содержат два основных момента: приведение в контакт диффундирующих веществ и анализ состава веществ, изменённого Д. Состав (концентрацию продиффундировавшего вещества) определяют химически, оптически (по изменению показателя преломления или поглощения света), масс-спектроскопически, методом меченых атомов и др.

  Д. играет важную роль в химической кинетике и технологии. При протекании химической реакции на поверхности катализатора или одного из реагирующих веществ (например, горении угля) Д. может определять скорость подвода др. реагирующих веществ и отвода продуктов реакции, т. е. являться определяющим (лимитирующим) процессом.

  Для испарения и конденсации, растворения кристаллов и кристаллизации определяющей оказывается обычно Д. Процесс Д. газов через пористые перегородки или в струю пара используется для изотопов разделения. Д. лежит в основе многочисленных технологических процессов — адсорбции, цементации и др. (см. Диффузионные процессы); широко применяются диффузионная сварка, диффузионная металлизация.

  В жидких растворах Д. молекул растворителя через полупроницаемые перегородки (мембраны) приводит к возникновению осмотического давления (см. Осмос), что используется в физико-химическом методе разделения веществ — диализе.

  Д. А. Франк-Каменецкий.

  Д. в биологических системах. Д. играет важную роль в процессах жизнедеятельности клеток и тканей животных и растений (например, Д. кислорода из лёгких в кровь и из крови в ткани, всасывание продуктов пищеварения из кишечника, поглощение элементов минерального питания клетками корневых волосков, Д. ионов при генерировании биоэлектрических импульсов нервными и мышечными клетками). Различная скорость Д. ионов через клеточные мембраны — один из физических факторов, влияющих на избирательное накопление элементов в клетках организма. Проникновение растворённого вещества в клетку может быть выражено законом Фика, в котором значение коэффициента Д. заменено коэффициентом проницаемости мембраны, а градиент концентрации — разностью концентраций вещества по обе стороны мембраны. Диффузионное проникновение в клетку газов и воды (см. Осмос) также описывается законом Фика; при этом значения разности концентраций заменяются значениями разности давлений газов и осмотических давлений внутри и вне клетки.

  Различают простую Д. — свободное перемещение молекул и ионов в направлении градиента их химического (электрохимического) потенциала (так могут перемещаться лишь вещества с малыми размерами молекул, например вода, метиловый спирт); ограниченную Д., когда мембрана клетки заряжена и ограничивает Д. заряженных частиц даже малого размера (например, слабое проникновение в клетку анионов); облегчённую Д. — перенос молекул и ионов, самостоятельно не проникающих или очень слабо проникающих через мембрану, др. молекулами («переносчиками»); так, по-видимому, проникают в клетку сахара и аминокислоты. Через мембрану, вероятно, могут диффундировать и переносчик, и комплекс переносчика с веществом. Перенос вещества, определяемый градиентом концентрации переносчика, называется обменной Д.; такая Д. отчётливо проявляется в экспериментах с изотопными индикаторами. Различную концентрацию веществ в клетке и окружающей её среде нельзя объяснить только Д. их через мембраны за счёт имеющихся электрохимических и осмотических градиентов. На распределение ионов влияют также процессы, которые могут вызывать перераспределение веществ против их электрохимического градиента с затратой энергии, — так называемый активный транспорт ионов.

  Л. Н. Воробьёв,  И. А. Воробьёва.

 

  Лит.: Френкель Я. И., Собр. избр. трудов, т. 3 — Кинетическая теория жидкостей, М. — Л., 1959; Гиршфельдер Дж., Кертисс Ч., Берд Р., Молекулярная теория газов и жидкостей, пер.(перевод) с англ.(английский), М., 1961; Шьюмон П., Диффузия в твердых телах, пер.(перевод) с англ.(английский), М., 1966; Франк-Каменецкий Д. А., Диффузия и теплопередача в химической кинетике, 2 изд., М., 1967; Булл Г., Физическая биохимия, пер.(перевод) с англ.(английский), М., 1949; Руководство по цитологии, т. 1, М. — Л., 1965; Ходоров Б. И., Проблема возбудимости, Л., 1969.