Граничний цикл
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Граничний цикл

Граничний цикл системи диференціальний рівнянь 2-го порядку

 — замкнута траєкторія у фазовому просторі xoy , що володіє тією властивістю, що всі траєкторії, що починаються в досить вузькій кільцеподібній її околиці, необмежено наближаються до цієї траєкторії або при t ® +¥ (стійкий П. ц.), або при t ® -¥ (нестійкий П. ц.), або частина з них при t ® +¥, а останні — при t ® -¥ (напівстійкий П. ц.). Наприклад, система

( r і j — полярні координати), загальне вирішення якої r = 1 – (1 – r 0 ) e -t , j = j 0 + t (де r 0 ³ 0), має стійкий П. ц. r = 1 ( див. мал.(малюнок) ). Поняття П. ц. переноситься також на систему n -го порядку. З механічної точки зору стійкий П. ц. відповідає стійкому періодичному режиму системи. Тому розшук П. ц. має важливе значення в теорії нелінійних коливань.

  Літ.: Понтрягин Л. С., Звичайні диференціальні рівняння, 3 видавництва, М., 1970; Андронов А. А., Вітт А. А., Хайкин С. Е., Теорія коливань, 2 видавництва, М., 1959.

Мал. до ст. Граничний цикл.