Гидроэлектрическая станция
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Гидроэлектрическая станция

Гидроэлектрическая станция, гидроэлектростанция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС(гидроэлектростанция) состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения (см. Гидротурбина), которая, в свою очередь, преобразуется в электрическую энергию (см. Гидрогенератор).

  Напор ГЭС(гидроэлектростанция) создаётся концентрацией падения реки на используемом участке (аб) плотиной (рис. 1), либо деривацией (рис. 2), либо плотиной и деривацией совместно (рис. 3). Основное энергетическое оборудование ГЭС(гидроэлектростанция) размещается в здании ГЭС(гидроэлектростанция): в машинном зале электростанции — гидроагрегаты, вспомогательное оборудование, устройства автоматического управления и контроля; в центральном посту управления — пульт оператора-диспетчера или автооператор гидроэлектростанции. Повышающая трансформаторная подстанция размещается как внутри здания ГЭС(гидроэлектростанция), так и в отдельных зданиях или на открытых площадках. Распределительные устройства зачастую располагаются на открытой площадке. Здание ГЭС(гидроэлектростанция) может быть разделено на секции с одним или несколькими агрегатами и вспомогательным оборудованием, отделённые от смежных частей здания. При здании ГЭС(гидроэлектростанция) или внутри него создаётся монтажная площадка для сборки и ремонта различного оборудования и для вспомогательных операций по обслуживанию ГЭС(гидроэлектростанция).

  По установленной мощности (в Мвт) различают ГЭС(гидроэлектростанция) мощные (свыше 250), средние (до 25) и малые (до 5). Мощность ГЭС(гидроэлектростанция) зависит от напора Нб (разности уровней верхнего и нижнего бьефа), расхода воды Q (м3/сек), используемого в гидротурбинах, и кпд(коэффициент полезного действия) гидроагрегата hг. По ряду причин (вследствие, например, сезонных изменений уровня воды в водоёмах, непостоянства нагрузки энергосистемы, ремонта гидроагрегатов или гидротехнических сооружений и т.п.) напор и расход воды непрерывно меняются, а кроме того, меняется расход при регулировании мощности ГЭС(гидроэлектростанция). Различают годичный, недельный и суточный циклы режима работы ГЭС(гидроэлектростанция).

  По максимально используемому напору ГЭС(гидроэлектростанция) делятся на высоконапорные (более 60 м), средненапорные (от 25 до 60 м) и низконапорные (от 3 до 25 м). На равнинных реках напоры редко превышают 100 м, в горных условиях посредством плотины можно создавать напоры до 300 м и более, а с помощью деривации — до 1500 м. Классификация по напору приблизительно соответствует типам применяемого энергетического оборудования: на высоконапорных ГЭС(гидроэлектростанция) применяют ковшовые и радиально-осевые турбины с металлическими спиральными камерами; на средненапорных — поворотнолопастные и радиально-осевые турбины с железобетонными и металлическими спиральными камерами, на низконапорных — поворотнолопастные турбины в железобетонных спиральных камерах, иногда горизонтальные турбины в капсулах или в открытых камерах. Подразделение ГЭС(гидроэлектростанция) по используемому напору имеет приблизительный, условный характер.

  По схеме использования водных ресурсов и концентрации напоров ГЭС(гидроэлектростанция) обычно подразделяют на русловые, приплотинные, деривационные с напорной и безнапорной деривацией, смешанные, гидроаккумулирующие и приливные. В русловых и приплотинных ГЭС(гидроэлектростанция) напор воды создаётся плотиной, перегораживающей реку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно некоторое затопление долины реки. В случае сооружения двух плотин на том же участке реки площадь затопления уменьшается. На равнинных реках наибольшая экономически допустимая площадь затопления ограничивает высоту плотины. Русловые и приплотинные ГЭС(гидроэлектростанция) строят и на равнинных многоводных реках и на горных реках, в узких сжатых долинах.

  В состав сооружений русловой ГЭС(гидроэлектростанция), кроме плотины, входят здание ГЭС(гидроэлектростанция) и водосбросные сооружения (рис. 4). Состав гидротехнических сооружений зависит от высоты напора и установленной мощности. У русловой ГЭС(гидроэлектростанция) здание с размещенными в нём гидроагрегатами служит продолжением плотины и вместе с ней создаёт напорный фронт. При этом с одной стороны к зданию ГЭС(гидроэлектростанция) примыкает верхний бьеф, а с другой — нижний бьеф. Подводящие спиральные камеры гидротурбин своими входными сечениями закладываются под уровнем верхнего бьефа, выходные же сечения отсасывающих труб погружены под уровнем нижнего бьефа.

  В соответствии с назначением гидроузла в его состав могут входить судоходные шлюзы или судоподъёмник, рыбопропускные сооружения, водозаборные сооружения для ирригации и водоснабжения. В русловых ГЭС(гидроэлектростанция) иногда единственным сооружением, пропускающим воду, является здание ГЭС(гидроэлектростанция). В этих случаях полезно используемая вода последовательно проходит входное сечение с мусорозадерживающими решётками, спиральную камеру, гидротурбину, отсасывающую трубу, а по специальным водоводам между соседними турбинными камерами производится сброс паводковых расходов реки. Для русловых ГЭС(гидроэлектростанция) характерны напоры до 30—40 м; к простейшим русловым ГЭС(гидроэлектростанция) относятся также ранее строившиеся сельские ГЭС(гидроэлектростанция) небольшой мощности. На крупных равнинных реках основное русло перекрывается земляной плотиной, к которой примыкает бетонная водосливная плотина и сооружается здание ГЭС(гидроэлектростанция). Такая компоновка типична для многих отечественных ГЭС(гидроэлектростанция) на больших равнинных реках. Волжская ГЭС(гидроэлектростанция) им. 22-го съезда КПСС — наиболее крупная среди станций руслового типа.

  При более высоких напорах оказывается нецелесообразным передавать на здание ГЭС(гидроэлектростанция) гидростатическое давление воды. В этом случае применяется тип приплотинной ГЭС(гидроэлектростанция), у которой напорный фронт на всём протяжении перекрывается плотиной, а здание ГЭС(гидроэлектростанция) располагается за плотиной, примыкает к нижнему бьефу (рис. 5). В состав гидравлической трассы между верхним и нижним бьефом ГЭС(гидроэлектростанция) такого типа входят глубинный водоприёмник с мусорозадерживающей решёткой, турбинный водовод, спиральная камера, гидротурбина, отсасывающая труба. В качестве дополнительных сооружений в состав узла могут входить судоходные сооружения и рыбоходы, а также дополнительный водосброс. Примером подобного типа станций на многоводной реке служит Братская ГЭС(гидроэлектростанция) на р. Ангара.

  Другой вид компоновки приплотинных ГЭС(гидроэлектростанция), соответствующий горным условиям, при сравнительно малых расходах реки, характерен для Нурекской ГЭС(гидроэлектростанция) на р. Вахш (Средняя Азия), проектной мощностью 2700 Мвт. Здание ГЭС(гидроэлектростанция) открытого типа располагается ниже плотины, вода подводится к турбинам по одному или нескольким напорным туннелям (см. рис. 2 в ст. Гидроузел). Иногда здание ГЭС(гидроэлектростанция) размещают ближе к верхнему бьефу в подземной (подземная ГЭС(гидроэлектростанция)) выемке. Такая компоновка целесообразна при наличии скальных оснований, особенно при земляных или набросных плотинах, имеющих значительную ширину. Сброс паводковых расходов производится через водосбросные туннели или через открытые береговые водосбросы.

  В деривационных ГЭС(гидроэлектростанция) концентрация падения реки создаётся посредством деривации; вода в начале используемого участка реки отводится из речного русла водоводом, с уклоном, значительно меньшим, чем средний уклон реки на этом участке и со спрямлением изгибов и поворотов русла. Конец деривации подводят к месту расположения здания ГЭС(гидроэлектростанция). Отработанная вода либо возвращается в реку, либо подводится к следующей деривационной ГЭС(гидроэлектростанция). Деривация выгодна тогда, когда уклон реки велик. Деривационная схема концентрации напора в чистом виде (бесплотинный водозабор или с низкой водозаборной плотиной) на практике приводит к тому, что из реки забирается лишь небольшая часть её стока. В др. случаях в начале деривации на реке сооружается более высокая плотина и создаётся водохранилище: такая схема концентрации падения называется смешанной, т.к. используются оба принципа создания напора. Иногда, в зависимости от местных условий, здание ГЭС(гидроэлектростанция) выгоднее располагать на некотором расстоянии от конца используемого участка реки вверх по течению; деривация разделяется по отношению к зданию ГЭС(гидроэлектростанция) на подводящую и отводящую. В ряде случаев с помощью деривации производится переброска стока реки в соседнюю реку, имеющую более низкие отметки русла. Характерным примером является Ингурская ГЭС(гидроэлектростанция), где сток р. Ингури перебрасывается туннелем в соседнюю р. Эрисцкали (Кавказ).

  Сооружения безнапорных деривационных ГЭС(гидроэлектростанция) состоят из трёх основных групп: водозаборное сооружение, водоприёмная плотина и собственно деривация (канал, лоток, безнапорный туннель). Дополнительными сооружениями на ГЭС(гидроэлектростанция) с безнапорной деривацией являются отстойники и бассейны суточного регулирования, напорные бассейны, холостые водосбросы и турбинные водоводы. Крупнейшая ГЭС(гидроэлектростанция) с безнапорной подводящей деривацией — ГЭС(гидроэлектростанция) Роберт-Мозес (США) мощностью 1950 Мвт, а с безнапорной отводящей деривацией — Ингурская ГЭС(гидроэлектростанция) (СССР) мощностью 1300 Мвт.

  На ГЭС(гидроэлектростанция) с напорной деривацией водовод (туннель, металлическая, деревянная или железобетонная труба) прокладывается с несколькими большим продольным уклоном, чем при безнапорной деривации. Применение напорной подводящей деривации обусловливается изменяемостью горизонта воды в верхнем бьефе, из-за чего в процессе эксплуатации изменяется и внутренний напор деривации. В состав сооружений ГЭС(гидроэлектростанция) этого типа входят: плотина, водозаборный узел, деривация с напорным водоводом, станционный узел ГЭС(гидроэлектростанция) с уравнительным резервуаром и турбинными водоводами, отводящая деривация в виде канала или туннеля (при подземной ГЭС(гидроэлектростанция)). Крупнейшая ГЭС(гидроэлектростанция) с напорной подводящей деривацией — Нечако-Кемано (Канада) проектной мощностью 1792 Мвт.

  ГЭС(гидроэлектростанция) с напорной отводящей деривацией применяется в условиях значительных изменений уровня воды в реке в месте выхода отводящей деривации или по экономическим соображениям. В этом случае необходимо сооружение уравнительного резервуара (в начале отводящей деривации) для выравнивания неустановившегося потока воды в реке. Наиболее мощная ГЭС(гидроэлектростанция) (350 Мвт) этого типа — ГЭС(гидроэлектростанция) Харспронгет (Швеция).

  Особое место среди ГЭС(гидроэлектростанция) занимают гидроаккумулирующие электростанции (ГАЭС) и приливные электростанции (ПЭС). Сооружение ГАЭС обусловлено ростом потребности в пиковой мощности в крупных энергетических системах, что и определяет генераторную мощность, требующуюся для покрытия пиковых нагрузок. Способность ГАЭС аккумулировать энергию основана на том, что свободная в энергосистеме в некоторый период времени (провала графика потребности) электрическая энергия используется агрегатами ГАЭС, которые, работая в режиме насоса, нагнетают воду из водохранилища в верхний аккумулирующий бассейн. В период пиков нагрузки аккумулированная т. о. энергия возвращается в энергосистему (вода из верхнего бассейна поступает в напорный трубопровод и вращает гидроагрегаты, работающие в режиме генератора тока). Мощность отдельных ГАЭС с такими обратимыми гидроагрегатами достигает 1620 Мвт (Корнуол, США).

  ПЭС преобразуют энергию морских приливов в электрическую. Электроэнергия приливных ГЭС(гидроэлектростанция) в силу некоторых особенностей, связанных с периодическим характером приливов и отливов, может быть использована в энергосистемах лишь совместно с энергией регулирующих электростанций, которые восполняют провалы мощности приливных электростанций в течение суток или месяцев. В 1967 во Франции было завершено строительство крупной ПЭС на р. Ранс (24 агрегата общей мощностью 240 Мвт). В СССР в 1968 в Кислой Губе (Кольский полуостров) вступила в строй первая опытная ПЭС мощностью 0,4 Мвт, на которой ныне проводятся экспериментальные работы для будущего строительства ПЭС.

  По характеру использования воды и условиям работы различают ГЭС(гидроэлектростанция) на бытовом стоке без регулирования, с суточным, недельным, сезонным (годовым) и многолетним регулированием. Отдельные ГЭС(гидроэлектростанция) или каскады ГЭС(гидроэлектростанция), как правило, работают в системе совместно с конденсационными электростанциями (КЭС), теплоэлектроцентралями (ТЭЦ), атомными электростанциями (АЭС), газотурбинными установками (ГТУ), причём в зависимости от характера участия в покрытии графика нагрузки энергосистемы ГЭС(гидроэлектростанция) могут быть базисными, полупиковыми и пиковыми (см. Энергосистема).

  Важнейшая особенность гидроэнергетических ресурсов по сравнению с топливно-энергетическими ресурсами — их непрерывная возобновляемость. Отсутствие потребности в топливе для ГЭС(гидроэлектростанция) определяет низкую себестоимость вырабатываемой на ГЭС(гидроэлектростанция) электроэнергии. Поэтому сооружению ГЭС(гидроэлектростанция), несмотря на значительные удельные капиталовложения на 1 квт установленной мощности и продолжительные сроки строительства, придавалось и придаётся большое значение, особенно когда это связано с размещением электроёмких производств (см. Гидроэнергетика).

  Одни из первых гидроэлектрических установок мощностью всего в несколько сотен вт были сооружены в 1876—81 в Штангассе и Лауфене (Германия) и в Грейсайде (Англия). Развитие ГЭС(гидроэлектростанция) и их промышленное использование тесно связано с проблемой передачи электроэнергии на расстояние: как правило, места, наиболее удобные для сооружения ГЭС(гидроэлектростанция), удалены от основных потребителей электроэнергии. Протяжённость существовавших в то время линий электропередач не превышала 5—10 км; самая длинная линия 57 км. Сооружение линии электропередачи (170 км) от Лауфенской ГЭС(гидроэлектростанция) до Франкфурта-на-Майне (Германия) для снабжения электроэнергией Международная электротехническая выставки (1891) открыла широкие возможности для развития ГЭС(гидроэлектростанция). В 1892 промышленный ток дала ГЭС(гидроэлектростанция), построенная на водопаде в Бюлахе (Швейцария), почти одновременно в 1893 были построены ГЭС(гидроэлектростанция) в Гельшене (Швеция), на р. Изар (Германия) и в Калифорнии (США). В 1896 вступила в строй Ниагарская ГЭС(гидроэлектростанция) (США) постоянного тока; в 1898 дала ток ГЭС(гидроэлектростанция) Рейнфельд (Германия), а в 1901 стали под нагрузку гидрогенераторы ГЭС(гидроэлектростанция) Жонат (Франция).

  В России существовали, но так и не были реализованы детально разработанные проекты ГЭС(гидроэлектростанция) русских учёных Ф. А. Пироцкого, И. А. Тиме, Г. О. Графтио, И. Г. Александрова и др., предусматривавших, в частности, использование порожистых участков рр. Днепр, Волхов, Западная Двина, Вуокса и др. Так, например, уже в 1892—95 русским инженером В. Ф. Добротворским были составлены проекты сооружения ГЭС(гидроэлектростанция) мощностью 23,8 Мвт на р. Нарова и 36,8 Мвт на водопаде Б. Иматра. Реализации этих проектов препятствовали как косность царской бюрократии, так и интересы частных капиталистических групп, связанных с топливной промышленностью. Первая промышленная ГЭС(гидроэлектростанция) в России мощностью около 0,3 Мвт (300 квт) была построена в 1895—96 под руководством русских инженеров В. Н. Чиколева и Р. Э. Классона для электроснабжения Охтинского порохового завода в Петербурге. В 1909 закончилось строительство крупнейшей в дореволюционной России Гиндукушской ГЭС(гидроэлектростанция) мощностью 1,35 Мвт (1350 квт) на р. Мургаб (Туркмения). В период 1905—17 вступили в строй Саткинская, Алавердинская, Каракультукская, Тургусунская, Сестрорецкая и др. ГЭС(гидроэлектростанция) небольшой мощности. Сооружались также частные фабрично-заводские гидроэлектрические установки с использованием оборудования иностранных фирм.

  1-я мировая война 1914—18 и связанный с ней интенсивный рост промышленности некоторых западных стран повлекли за собой развитие действовавших и строительство новых энергопромышленных центров, в том числе на базе ГЭС(гидроэлектростанция). В результате мощность ГЭС(гидроэлектростанция) во всём мире к 1920 достигла 17 тыс. Мвт, а мощность отдельных ГЭС(гидроэлектростанция), например Масл-Шолс (США), Иль-Малинь (Канада), превысила 400 Мвт (400 тыс. квт).

  Общая мощность ГЭС(гидроэлектростанция) России к 1917 составляла всего около 16 Мвт; самой крупной была Гиндукушская ГЭС(гидроэлектростанция). Строительство мощных ГЭС(гидроэлектростанция) началось по существу только после Великой Октябрьской социалистической революции. В восстановительный период (20-е гг.) в соответствии с планом ГОЭЛРО были построены первые крупные ГЭС(гидроэлектростанция) — Волховская (ныне Волховская ГЭС(гидроэлектростанция) им. В. И. Ленина) и Земо-Авчальская ГЭС(гидроэлектростанция) им. В. И. Ленина. В годы первых пятилеток (1929—40) вступили в строй ГЭС(гидроэлектростанция) — Днепровская, Нижнесвирская, Рионская и др.

  К началу Великой Отечественной войны 1941—45 было введено в эксплуатацию 37 ГЭС(гидроэлектростанция) общей мощностью более 1500 Мвт. Во время войны было приостановлено начатое строительство ряда ГЭС(гидроэлектростанция) общей мощностью около 1000 Мвт (1 млн. квт). Значительная часть ГЭС(гидроэлектростанция) общей мощностью около 1000 Мвт оказалась разрушенной или демонтированной. Началось сооружение новых ГЭС(гидроэлектростанция) малой и средней мощности на Урале (Широковская, Верхотурская, Алапаевская, Белоярская и др.), в Средней Азии (Аккавакские, Фархадская, Саларская, Нижнебуэсуйские и др.), на Северном Кавказе (Майкопская, Орджоникидзевская, Краснополянская), в Азербайджане (Мингечаурская ГЭС(гидроэлектростанция)), в Грузии (Читахевская ГЭС(гидроэлектростанция)) и в Армении (Гюмушская ГЭС(гидроэлектростанция)). К концу 1945 в Советском Союзе мощность всех ГЭС(гидроэлектростанция), вместе с восстановленными, достигла 1250 Мвт, а годовая выработка электроэнергии — 4,8 млрд. квт/ч.

  В начале 50-х гг. развернулось строительство крупных гидроэлектростанций на р. Волге у гг. Горького, Куйбышева и Волгограда, Каховской и Кременчугской ГЭС(гидроэлектростанция) на Днепре, а также Цимлянской ГЭС(гидроэлектростанция) на Дону. Волжские ГЭС(гидроэлектростанция) им. В. И. Ленина и им. 22-го съезда КПСС стали первыми из числа наиболее мощных ГЭС(гидроэлектростанция) в СССР и в мире. Во 2-й половине 50-х гг. началось строительство Братской ГЭС(гидроэлектростанция) на р. Ангаре и Красноярской ГЭС(гидроэлектростанция) на р. Енисее. С 1946 по 1958 в СССР были построены и восстановлены 63 ГЭС(гидроэлектростанция) общей мощностью 9600 Мвт. За семилетие 1959—65 было введено 11400 Мвт новых гидравлических мощностей и суммарная мощность ГЭС(гидроэлектростанция) достигла 22200 Мвт (табл. 1). К 1970 в СССР продолжалось строительство 35 промышленных ГЭС(гидроэлектростанция) (суммарной мощностью 32000 Мвм), в том числе 11 ГЭС(гидроэлектростанция) единичной мощностью свыше 1000 Мвт: Саяно-Шушенская, Красноярская, Усть-Илимская, Нурекская, Ингурская, Саратовская, Токтогульская, Нижнекамская, Зейская, Чиркейская, Чебоксарская.

  Табл. 1. — Развитие ГЭС(гидроэлектростанция) в СССР за период 1965—80

Показатели ГЭС(гидроэлектростанция)

1965

1970

1975

1980

(прогноз)

Установленная мощность ГЭС(гидроэлектростанция), Мвт

22200

32000

50000

74500

Доля ГЭС(гидроэлектростанция) в общей мощности электростанций СССР, %

19,3

18,6

 

20

20,3

Выработка электроэнергии в год, млрд. квт ·ч

81,4

121

182

260

 

Доля ГЭС(гидроэлектростанция) в выработке электроэнергии в СССР, %

16,1

16

 

15,6

14,6

Мощность ГАЭС, Мет

-

30

1410

5100

  В 60-х гг. наметилась тенденция к снижению доли ГЭС(гидроэлектростанция) в общем мировом производстве электроэнергии и всё большему использованию ГЭС(гидроэлектростанция) для покрытия пиковых нагрузок. К 1970 всеми ГЭС(гидроэлектростанция) мира производилось около 1000 млрд. квт/ч электроэнергии в год, причём начиная с 1960 доля ГЭС(гидроэлектростанция) в мировом производстве снижалась в среднем за год примерно на 0,7%. Особенно быстро снижается доля ГЭС(гидроэлектростанция) в общем производстве электроэнергии в ранее традиционно считавшихся «гидроэнергетическими» странах (Швейцария, Австрия, Финляндия, Япония, Канада, отчасти Франция), т.к. их экономический гидроэнергетический потенциал практически исчерпан.

  Табл. 2. —Крупнейшие ГЭС(гидроэлектростанция) мира

Наименование

ГЭС

Мощность ГЭС(гидроэлектростанция) *,

Мвт

Год начала

эксплуатации

Действующие

 

 

Красноярская, СССР....

5000

(6000)

1967

Братская, СССР

4100

(4600)

1961

Волжская им. 22-го съезда КПСС, СССР

2530

1958

Волжская им. В. И. Ленина, СССР

2300

1955

Джон-Дей, США

2160

(2700)

1968

Гранд-Кули, США

1974

(1711)

1941

Роберт-Мозес (Ниагара), США

1950

1961

Св. Лаврентия, Канада-США

1824

1958

Высотная Асуанская, АРЕ

1750

(2100)

1967

Боарнуа, Канада

1639

1948

Строятся

 

Саяно-Шушенская, СССР

6300

-

Черчилл-Фолс, Канада

4500

-

Усть-Илимская, СССР

4300

-

Илья-Солтейра, Бразилия

3200

-

Нурекская, СССР

2700

-

Портидж-Маунтин, Канада

2300

-

Железные Ворота,

Румыния—Югославия

2100

-

Тарбалла, Пакистан

2000

-

Мика, Канада

2000