Гармонический ряд
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Гармонический ряд

Гармонический ряд, числовой ряд

 

  Каждый член Г. р. (начиная со 2-го) является гармоническим средним между двумя соседними (отсюда название — Г. р.). Члены Г. р. стремятся к нулю, однако Г. р. расходится (Г. Лейбниц, 1673). Сумма n первых членов Г. р. имеет следующее асимптотическое выражение (Л. Эйлер, 1740):

  Sn = ln n +С+ en,

  где С = 0,577215... — Эйлера постоянная, а en ® 0 при n ® ¥.