Водород
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Водород

Водород (лат. Hydrogenium), Н, химический элемент, первый по порядковому номеру в периодической системе Менделеева; атомная масса 1,00797. При обычных условиях В. — газ; не имеет цвета, запаха и вкуса.

  Историческая справка. В трудах химиков 16 и 17 вв.(века) неоднократно упоминалось о выделении горючего газа при действии кислот на металлы. В 1766 Г. Кавендиш собрал и исследовал выделяющийся газ, назвав его «горючий воздух». Будучи сторонником теории флогистона, Кавендиш полагал, что этот газ и есть чистый флогистон. В 1783 А. Лавуазье путём анализа и синтеза воды доказал сложность её состава, а в 1787 определил «горючий воздух» как новый химический элемент (В.) и дал ему современное название hydrogène (от греч.(греческий) hýdōr — вода и gennáō — рождаю), что означает «рождающий воду»; этот корень употребляется в названиях соединений В. и процессов с его участием (например, гидриды, гидрогенизация). Современное русское наименование «В.» было предложено М. Ф. Соловьёвым в 1824.

  Распространённость в природе. В. широко распространён в природе, его содержание в земной коре (литосфера и гидросфера) составляет по массе 1%, а по числу атомов 16%. В. входит в состав самого распространённого вещества на Земле — воды (11,19% В. по массе), в состав соединений, слагающих угли, нефть, природные газы, глины, а также организмы животных и растений (т. е. в состав белков, нуклеиновых кислот, жиров, углеводов и др.). В свободном состоянии В. встречается крайне редко, в небольших количествах он содержится в вулканических и других природных газах. Ничтожные количества свободного В. (0,0001% по числу атомов) присутствуют в атмосфере. В околоземном пространстве В. в виде потока протонов образует внутренний («протонный») радиационный пояс Земли. В космосе В. является самым распространённым элементом. В виде плазмы он составляет около половины массы Солнца и большинства звёзд, основную часть газов межзвёздной среды и газовых туманностей. В. присутствует в атмосфере ряда планет и в кометах в виде свободного H2, метана CH4, аммиака NH3, воды H2O, радикалов типа CH, NH, OH, SiH, PH и т.д. В виде потока протонов В. входит в состав корпускулярного излучения Солнца и космических лучей.

  Изотопы, атом и молекула. Обыкновенный В. состоит из смеси 2 устойчивых изотопов: лёгкого В., или протия (1H), и тяжёлого В., или дейтерия (2H, или D). В природных соединениях В. на 1 атом 2H приходится в среднем 6800 атомов 1H. Искусственно получен радиоактивный изотоп — сверхтяжёлый В., или тритий (3H, или Т), с мягким β-излучением и периодом полураспада T1/2 = 12,262 года. В природе тритий образуется, например, из атмосферного азота под действием нейтронов космических лучей; в атмосфере его ничтожно мало (4·10-15% от общего числа атомов В.). Получен крайне неустойчивый изотоп 4H. Массовые числа изотопов 1H, 2H, 3H и 4H, соответственно 1,2, 3 и 4, указывают на то, что ядро атома протия содержит только 1 протон, дейтерия — 1 протон и 1 нейтрон, трития — 1 протон и 2 нейтрона, 4H 1 протон и 3 нейтрона. Большое различие масс изотопов В. обусловливает более заметное различие их физических и химических свойств, чем в случае изотопов других элементов.

  Атом В. имеет наиболее простое строение среди атомов всех других элементов: он состоит из ядра и одного электрона. Энергия связи электрона с ядром (потенциал ионизации) составляет 13,595 эв. Нейтральный атом В. может присоединять и второй электрон, образуя отрицательный ион Н-; при этом энергия связи второго электрона с нейтральным атомом (сродство к электрону) составляет 0,78 эв. Квантовая механика позволяет рассчитать все возможные энергетические уровни атома В., а следовательно, дать полную интерпретацию его атомного спектра. Атом В. используется как модельный в квантовомеханических расчётах энергетических уровней других, более сложных атомов. Молекула В. H2 состоит из двух атомов, соединённых ковалентной химической связью. Энергия диссоциации (т. е. распада на атомы) составляет 4,776 эв (1 эв = 1,60210·10-19 дж). Межатомное расстояние при равновесном положении ядер равно 0,7414·Å. При высоких температурах молекулярный В. диссоциирует на атомы (степень диссоциации при 2000°С 0,0013, при 5000°С 0,95). Атомарный В. образуется также в различных химических реакциях (например, действием Zn на соляную кислоту). Однако существование В. в атомарном состоянии длится лишь короткое время, атомы рекомбинируют в молекулы H2.

  Физические и химические свойства. В. — легчайшее из всех известных веществ (в 14,4 раза легче воздуха), плотность 0,0899 г/л при 0°С и 1 атм. В. кипит (сжижается) и плавится (затвердевает) соответственно при —252,6°С и —259,1°С (только гелий имеет более низкие температуры плавления и кипения). Критическая температура В. очень низка (—240°С), поэтому его сжижение сопряжено с большими трудностями; критическое давление 12,8 кгс/см2 (12,8 атм), критическая плотность 0,0312 г/см3. Из всех газов В. обладает наибольшей теплопроводностью, равной при 0°С и 1 атм 0,174 вт/(м·К), т. е. 4,16·0-4 кал/(с·см·°С). Удельная теплоёмкость В. при 0°С и 1 атм Ср 14,208·103 дж/(кг·К), т. е. 3,394 кал/(г·°С). В. мало растворим в воде (0,0182 мл/г при 20°С и 1 атм), но хорошо — во многих металлах (Ni, Pt, Pd и др.), особенно в палладии (850 объёмов на 1 объём Pd). С растворимостью В. в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия В. с углеродом (так называемая декарбонизация). Жидкий В. очень лёгок (плотность при —253°С 0,0708 г/см3) и текуч (вязкость при — 253°С 13,8 спуаз).

  В большинстве соединений В. проявляет валентность (точнее, степень окисления) +1, подобно натрию и другим щелочным металлам; обычно он и рассматривается как аналог этих металлов, возглавляющий 1 гр. системы Менделеева. Однако в гидридах металлов ион В. заряжен отрицательно (степень окисления —1), т. е. гидрид Na+H- построен подобно хлориду Na+Cl-. Этот и некоторые другие факты (близость физических свойств В. и галогенов, способность галогенов замещать В. в органических соединениях) дают основание относить В. также и к VII группе периодической системы (подробнее см.(смотри) Периодическая система элементов). При обычных условиях молекулярный В. сравнительно мало активен, непосредственно соединяясь лишь с наиболее активными из неметаллов (с фтором, а на свету и с хлором). Однако при нагревании он вступает в реакции со многими элементами. Атомарный В. обладает повышенной химической активностью по сравнению с молекулярным. С кислородом В. образует воду: H2 + 1/2O2 = H2O с выделением 285,937·103 дж/моль, т. е. 68,3174 ккал/моль тепла (при 25°С и 1 атм). При обычных температурах реакция протекает крайне медленно, выше 550°С — со взрывом. Пределы взрывоопасности водородо-кислородной смеси составляют (по объёму) от 4 до 94% H2, а водородо-воздушной смеси — от 4 до 74% H2 (смесь 2 объёмов H2 и 1 объёма О2 называется гремучим газом). В. используется для восстановления многих металлов, так как отнимает кислород у их окислов:

  CuO +Н2 = Cu + H2O,

  Fe3O4 + 4H2 = 3Fe + 4H2O, и т.д.

  С галогенами В. образует галогеноводороды, например:

  H2 + Cl2 = 2HCl.

При этом с фтором В. взрывается (даже в темноте и при —252°С), с хлором и бромом реагирует лишь при освещении или нагревании, а с иодом только при нагревании. С азотом В. взаимодействует с образованием аммиака: 3H2 + N2 = 2NH3 лишь на катализаторе и при повышенных температурах и давлениях. При нагревании В. энергично реагирует с серой: H2 + S = H2S (сероводород), значительно труднее с селеном и теллуром. С чистым углеродом В. может реагировать без катализатора только при высоких температурах: 2H2 + С (аморфный) = CH4 (метан). В. непосредственно реагирует с некоторыми металлами (щелочными, щёлочноземельными и др.), образуя гидриды: H2 + 2Li = 2LiH. Важное практическое значение имеют реакции В. с окисью углерода, при которых образуются в зависимости от температуры, давления и катализатора различные органические соединения, например HCHO, CH3OH и др. (см. Углерода окись). Ненасыщенные углеводороды реагируют с В., переходя в насыщенные, например: CnH2n + H2 = CnH2n+2 (см. Гидрогенизация).

  Роль В. и его соединений в химии исключительно велика. В. обусловливает кислотные свойства так называемых протонных кислот (см. Кислоты и основания). В. склонен образовывать с некоторыми элементами так называемую водородную связь, оказывающую определяющее влияние на свойства многих органических и неорганических соединений.

  Получение. Основные виды сырья для промышленного получения В. — газы природные горючие, коксовый газ (см. Коксохимия) и газы нефтепереработки, а также продукты газификации твёрдых и жидких топлив (главным образом угля). В. получают также из воды электролизом (в местах с дешёвой электроэнергией). Важнейшими способами производства В. из природного газа являются каталитическое взаимодействие углеводородов, главным образом метана, с водяным паром (конверсия): CH4 + H2O = CO + 3H2, и неполное окисление углеводородов кислородом: CH4 + 1/2O2 = CO + 2H2. Образующаяся окись углерода также подвергается конверсии: CO + H2O = CO2 + H2. В., добываемый из природного газа, самый дешёвый. Очень распространён способ производства В. из водяного и паровоздушного газов, получаемых газификацией угля. Процесс основан на конверсии окиси углерода. Водяной газ содержит до 50% H2 и 40% CO; в паровоздушном газе, кроме H2 и CO, имеется значительное количество N2, который используется вместе с получаемым В. для синтеза NH3. Из коксового газа и газов нефтепереработки В. выделяют путём удаления остальных компонентов газовой смеси, сжижаемых более легко, чем В., при глубоком охлаждении. Электролиз воды ведут постоянным током, пропуская его через раствор KOH или NaOH (кислоты не используются во избежание коррозии стальной аппаратуры). В лабораториях В. получают электролизом воды, а также по реакции между цинком и соляной кислотой. Однако чаще используют готовый заводской В. в баллонах.

  Применение. В промышленном масштабе В. стали получать в конце 18 в. для наполнения воздушных шаров. В настоящее время В. широко применяют в химической промышленности, главным образом для производства аммиака. Крупным потребителем В. является также производство метилового и других спиртов, синтетического бензина (синтина) и других продуктов, получаемых синтезом из В. и окиси углерода. В. применяют для гидрогенизации твёрдого и тяжёлого жидкого топлив, жиров и др., для синтеза HCl, для гидроочистки нефтепродуктов, в сварке и резке металлов кислородо-водородным пламенем (температура до 2800°С) и в атомно-водородной сварке (до 4000°С). Очень важное применение в атомной энергетике нашли изотопы В. — дейтерий и тритий.

  Лит.: Некрасов Б. В., Курс общей химии, 14 изд., М., 1962; Реми Г., Курс неорганической химии, пер.(перевод) с нем.(немецкий), т. 1, М., 1963; Егоров А. П., Шерешевский Д. И., Шманенков И. В., Общая химическая технология неорганических веществ, 4 изд., М., 1964; Общая химическая технология. Под ред. С. И. Вольфковича, т. 1, М., 1952; Лебедев В. В., Водород, его получение и использование, М., 1958; Налбандян А. Б., Воеводский В. В., Механизм окисления и горения водорода, М. — Л., 1949; Краткая химическая энциклопедия, т. 1, М., 1961, с. 619—24.

  С. Э. Вайсберг.