Оптическая локация
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Оптическая локация

Оптическая локация, совокупность методов обнаружения, измерения координат, а также распознавания формы удалённых объектов с помощью электромагнитных волн оптического диапазона — от ультрафиолетовых до дальних инфракрасных. О. л. позволяет с высокой точностью (до нескольких десятков см) производить картографирование земной поверхности, поверхности Луны, определять расстояние до облаков, самолётов, космических, надводных и подводных (используя зелёный участок спектра) объектов, исследовать распределение инверсионных и аэрозольных слоев в атмосфере. Практически создание оптических локаторов с большой дальностью действия, высокими точностью и разрешающей способностью стало возможным только с появлением таких мощных источников когерентного излучения, как оптические квантовые генераторы — лазеры. В О. л. используются те же принципы определения координат, что и в радиолокации: оптический локатор облучает объект с помощью передатчика и принимает отражённое от него излучение при помощи приёмника. Электрический сигнал на выходе приёмника содержит информацию о параметрах лоцируемого объекта; характеристики этого сигнала в среднем пропорциональны координатам объекта. Методы обнаружения объектов оптическим локатором и определения их угловых координат в основном такие же, как в теплопеленгации (см. Инфракрасное излучение), а методы определения дальности такие же, как в радиолокации. Вследствие квантового характера взаимодействия лазерного излучения с детектором приёмника и когерентности лазерного излучения методы обработки сигнала в О. л. являются статистическими. Если оптический локатор определяет только расстояние до объектов, он называется электрооптическим дальномером.

  Схема и принцип действия одного из типов оптического локатора для слежения за авиационными и космическими объектами показаны на рис. Луч лазера, пройдя через коллиматор, системой зеркал направляется на объект. Отражённый от объекта луч улавливается плоским зеркалом и направляется на параболическое зеркало, с которого поступает одновременно на диссектор (или матрицу фотоприёмника) — для определения угловых координат и на фотоэлектронный умножитель (или иной детектор) — для определения дальности объекта. Электрические сигналы с диссектора подаются в следящую систему, управляющую положением передающей и приёмной оптических систем локатора.

  Основные преимущества оптических локаторов перед радиолокаторами — большая точность определения угловых координат объектов (по максимуму отражённого сигнала) и высокая разрешающая способность по дальности. Например, при использовании лазерного луча с углом расхождения, равным 10', погрешность определения угловых координат объекта составляет менее 1' (у радиолокаторов — 25—30'); при длительности светового импульса 10 нсек разрешение по дальности может достигать нескольких см. Кроме того, оптический локатор обладает высокой угловой разрешающей способностью, т. е. способностью различать 2 соседних равноудалённых объекта, которая обусловлена очень высокой направленностью излучения. Высокая разрешающая способность оптического локатора даёт возможность решать задачу распознавания формы объектов. Существенный недостаток оптических локаторов — затруднительное использование их в сложных метеорологических условиях (при дожде, тумане, снеге и т.п.) для локации объектов на далёких расстояниях.

  Лит.: Криксунов Л. 3., Усольцев И. Ф., Инфракрасные системы обнаружения, пеленгации и автоматического сопровождения движущихся объектов, М., 1968; Волохатюк В. А., Кочетков В. М., Красовский P. P., Вопросы оптической локации, М., 1971; Курикша А. А., Квантовая оптика и оптическая локация, М., 1973.

  И. Ф. Усольцев.

Схема и принцип действия оптического локатора: 1 — передатчик (лазер); 2 — коллиматор; 3, 4 — зеркала; 5 — передающая оптическая система; 6 — лоцируемый объект; 7 — приёмная оптическая система; 8 — зеркало; 9 — полупрозрачное зеркало; 10 — узкополосный оптический фильтр; 11 — диссектор; 12 — зеркало; 13 — приёмник дальномерного устройства (фотоэлектронный умножитель); 14 — устройство ручного управления; 15 — следящая система. Пунктиром показан ход лучей, отражённых от объекта.