Магнитная структура атомная, периодическое пространственное расположение и ориентация атомных магнитных моментов в магнитоупорядоченном кристалле (ферро-, ферри- или антиферромагнетике). Атомную М. с. следует отличать от доменной магнитной структуры, определяемой характером и взаимным расположением доменов. Периодичность расположения атомных магнитных моментов в пространстве определяется кристаллической структурой вещества. За взаимную ориентацию моментов ответственно обменное взаимодействие электрич. природы, за их общую ориентацию относительно кристаллографических осей — силы магнитной анизотропии. Более сложные (и слабые) типы магнитного взаимодействия могут усложнять атомную М. с. (см. Метамагнетик).
Различают два основных класса магнитных веществ, связанных с определённой атомной М. с.: вещества с ненулевым суммарным макроскопическим магнитным моментом М (М ¹ 0) и вещества с М = 0. Первому случаю соответствует ферромагнитная М. с. (рис. 1, а): магнитные моменты всех атомов выстраиваются вдоль одного направления (оси лёгкого намагничивания), которое может быть различным у разных кристаллов. Второму случаю соответствует антиферромагнитная М. с. (рис. 1, б): у каждого магнитного момента в ближайшем окружении имеется компенсирующий момент, ориентированный строго антипараллельно. В зависимости от характера ближайшего окружения могут осуществляться различные антиферромагнитные М. с. (например, структуры, показанные на рис. 1, б, в и г). Антиферромагнитные М. с. могут иметь периоды большие, чем периоды атомной структуры, в целое число раз. Иногда осуществляются антиферромагнитные М. с. с ориентацией магнитных моментов вдоль двух или трёх осей и ещё более сложные — зонтичные, треугольные и другие (рис. 1, д, е).
Близки к антиферромагнитной М. с. ферримагнитные структуры с М ¹ 0. Они имеют место, когда антиферромагнитная М. с. образуется атомами или ионами с разными по величине магнитными моментами (рис. 1, ж). При этом значение М определяется величиной разности моментов двух магнитных подрешёток (систем одинаково ориентированных магнитных моментов). Другой случай осуществляется в слабых ферромагнетиках: наличие дополнительных сил межатомного воздействия приводит к неколлинеарности магнитных моментов и появлению суммарной ферромагнитной составляющей (рис. 1, з). См. Слабый ферромагнетизм.
Более сложный (дальнодействующий) характер межатомного взаимодействия в некоторых случаях приводит к установлению геликоидальных М. с. В последних магнитные моменты соседних атомов повёрнуты друг относительно друга так, что концы изображающих их векторов лежат на одной спиральной линии. В зависимости от величины проекции магнитных моментов на направление оси спирали различают несколько видов геликоидальных М. с. (рис. 2). Существенное отличие геликоидальных М. с. от остальных М. с. заключается в том, что в общем случае шаг спирали несоизмерим с соответствующим периодом кристаллической решётки и, кроме того, зависит от температуры.
Полная классификация М. с. основывается на теории магнитной симметрии, учитывающей не только расположение, но и ориентацию атомных магнитных моментов в кристалле. В число преобразований магнитной симметрии, кроме обычных поворотов вокруг осей симметрии, отражения в плоскостях симметрии и трансляций, дополнительно входит преобразование R, изменяющее направления магнитных моментов на противоположные. Введение преобразования R увеличивает число классов симметрии с 32 до 122, а число пространственных групп симметрии — с 230 до 1651. Вещества, обладающие М. с., описываются теми группами магнитной симметрии, в которые R входит в виде произведений с обычными элементами симметрии кристаллов.
М. с. кристалла и его физические (в первую очередь магнитные) свойства тесно взаимосвязаны. Поэтому косвенные суждения о М. с. могут быть высказаны на основе данных об этих физических свойствах вещества. Прямые данные о М. с. кристаллов позволяет получить магнитная нейтронография. Со времени первой работы в этой области (1949) нейтронографически установлена М. с. более тысячи различных металлов, сплавов и химических соединений. Для установления М. с. может быть использован также ядерный гамма-резонанс (Мёссбауэра эффект).
Лит.: Изюмов Ю. А., Озеров Р. П., Магнитная нейтронография. М., 1966: Вонсовский С. В., Магнетизм, М., 1971: Копцик В. А., Шубниковские группы, М., 1966.