Интуиционистская логика
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Интуиционистская логика

Интуиционистская логика, форма логики предикатов, отражающая взгляд интуиционизма на характер логических законов, считающихся, с его точки зрения, допустимыми в применении к доказательствам суждений из тех частей дедуктивных наук (особенно математики), которые существенно связаны с понятием математической бесконечности.

  В соответствии с концепцией интуиционизма, в И. л. нет исключенного третьего принципа и закона снятия двойного отрицания. В качестве И. л. обычно рассматривается формальная логическая система, построенная нидерландским математиком А. Гейтингом в 1930 (охватывает логику предикатов; ещё ранее — на основании соображений, отличных от интуиционистских, — систему И. л. в применении к логике высказываний, составляющей часть логики предикатов, построил советский учёный В. И. Гливенко). Интуиционистская логика Гейтинга отличается тем, что выразимые в ней содержательные рассуждения являются приемлемыми с точки зрения интуиционизма нидерландского математика Л. Э. Я. Брауэра.

  С развитием конструктивных направлений в математике и логике И. л. нашла в них применение и поэтому стала часто называться конструктивной логикой (хотя в И. л. и нет некоторых принципов, признаваемых многими представителями этих направлений, например принципа конструктивного подбора, выдвинутого конструктивным направлением, возглавляемым советским математиком А. А. Марковым).