Земля (планета)
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Земля (планета)

Земля (планета)

Земля (от общеславянского зем — пол, низ), третья по порядку от Солнца планета Солнечной системы, астрономический знак Å или, ♀.

загрузка...

  I. Введение

  З. занимает пятое место по размеру и массе среди больших планет, но из планет т. н. земной группы, в которую входят Меркурий, Венера, Земля и Марс, она является самой крупной (см. Планеты). Важнейшим отличием З. от др. планет Солнечной системы является существование на ней жизни, достигшей с появлением человека своей высшей, разумной формы. Условия для развития жизни на ближайших к З. телах Солнечной системы неблагоприятны; обитаемые тела за пределами последней пока также не обнаружены (см. Внеземные цивилизации). Однако жизнь — естественный этап развития материи, поэтому З. нельзя считать единственным обитаемым космическим телом Вселенной, а земные формы жизни — её единственно возможными формами.

  Согласно современным космогоническим представлениям, З. образовалась ~4,5 млрд. лет назад путём гравитационной конденсации из рассеянного в околосолнечном пространстве газо-пылевого вещества, содержащего все известные в природе химические элементы (см. Космогония). Формирование З. сопровождалось дифференциацией вещества, которой способствовал постепенный разогрев земных недр, в основном за счёт теплоты, выделявшейся при распаде радиоактивных элементов (урана, тория, калия и др.). Результатом этой дифференциации явилось разделение З. на концентрически расположенные слои — геосферы, различающиеся химическим составом, агрегатным состоянием и физическими свойствами. В центре образовалось ядро Земли, окруженное т. н. мантией (см. Мантия Земли). Из наиболее лёгких и легкоплавких компонентов вещества, выделившихся из мантии в процессах выплавления (см. Зонное плавление), возникла расположенная над мантией земная кора. Совокупность этих внутренних геосфер, ограниченных твёрдой земной поверхностью, иногда называют «твёрдой» З. (хотя это не совсем точно, поскольку установлено, что внешняя часть ядра обладает свойствами вязкой жидкости). «Твёрдая» З. заключает почти всю массу планеты (см. табл. 1). За её пределами находятся внешние геосферы — водная (гидросфера) и воздушная (атмосфера), которые сформировались из паров и газов, выделившихся из недр З. при дегазации мантии. Дифференциация вещества мантий З. и пополнение продуктами дифференциации земной коры, водной и воздушной оболочек происходили на протяжении всей геологической истории и продолжаются до сих пор.

  Табл. 1. Схема строения Земли (без верхней атмосферы и магнитосферы)

Геосферы

Расстояние нижней* границы от поверхности Земли, км

Объём, 1018 м3

Масса, 1021 кг

Доля массы геосферы от массы Земли, %

Атмосфера, до высоты

2000**

1320

~0,005

~ 10 -6

Гидросфера

до 11

1,4

1,4

0,02

Земная кора

5-70

10,2

28

0,48

Мантия

до 2900

896,6

4013

67,2

Ядро

6371 (центр З.)

175,2

1934

32,3

Вся Земля (без атмосферы)

 

1083,4

5976

100,0

    *Кроме атмосферы.

  **Атмосфера в целом простирается до высоты ~ 20 тыс. км.

 

  Табл. 2. — Материки (с островами)

Название материка

Площадь, млн. км2

Средняя высота, м

Наибольшая высота гор на материке, м*

Евразия

 

53,45

840

8848

Африка

30.30

750

5895

Северная Америка

24,25

720

6194

Южная Америка

18,28

590

6960

Антарктида

13,97

2040

5140

Австралия (с Океанией)

8,89

340

2230

* Сверху вниз по колонке вершины: Джомолунгма (Эверест), Килиманджаро, Мак-Кинлн, Аконкагуа, массив Винсон, Косцюшко. Наиболее высокая вершина Океании — г. Джая, 5029 м (на острове Новая Гвинея).

  Табл. 3. — Океаны

Название океана

Поверхность зеркала, млн. км2

Средняя глубина, м

Наибольшая глубина, м

Тихий

179,68

3984

11022

Атлантический

93,36*

3926

8428

Индийский

74,92

3897

7130

Северный Ледовитый

13,10

1205

5449

* По др. данным, 91,14 млн. км2.

  Большую часть поверхности З. занимает Мировой океан (361,1 млн. км2, или 70,8%), суша составляет 149,1 млн. км2 (29,2%) и образует шесть крупных массивов — материков: Евразию, Африку, Северную Америку, Южную Америку, Антарктиду и Австралию (см. табл. 2), а также многочисленные острова. С делением суши на материки не совпадает деление на части света: Евразию делят на две части света — Европу и Азию, а оба американских материка считают за одну часть света — Америку, иногда за особую «океаническую» часть света принимают острова Тихого океана — Океанию, площадь которой обычно учитывается вместе с Австралией.

  Мировой океан расчленяется материками на Тихий, Атлантический, Индийский и Северный Ледовитый (см. табл. 3); некоторые исследователи выделяют приантарктические части Атлантического, Тихого и Индийского океанов в особый, Южный, океан.

  Северное полушарие З. — материковое (суша здесь занимает 39% поверхности), а Южное — океаническое (суша составляет лишь 19% поверхности). В Западном полушарии преобладающая часть поверхности занята водой, в Восточном — сушей.

  Обобщённый профиль суши и дна океанов образует две гигантские «ступени» — материковую и океаническую. Первая поднимается над второй в среднем на 4670 м (средняя высота суши 875 м; средняя глубина океана около 3800 м). Над равнинной поверхностью материковой «ступени» возвышаются горы, отдельные вершины которых имеют высоту 7—8 км и более. Высочайшая вершина мира — г. Джомолунгма в Гималаях — достигает 8848 м. Она возвышается над глубочайшим понижением дна океана (Марианский глубоководный жёлоб в Тихом океане 11 022 м) почти на 20 км. См. Гипсографическая кривая.

  З. обладает гравитационным, магнитным и электрическим полями. Гравитационное притяжение З. удерживает на околоземной орбите Луну и искусственные спутники. Действием гравитационного поля обусловлены сферическая форма З., многие черты рельефа земной поверхности, течение рек, движение ледников и др. процессы.

  Магнитное поле создаётся в результате сложного движения вещества в ядре З. (см. Земной магнетизм). В межпланетном пространстве оно занимает область, объём которой намного превосходит объём З., а форма напоминает комету с хвостом, направленным от Солнца. Эту область называют магнитосферой.

  С магнитным полем З. тесно связано её электрическое поле. «Твёрдая» З. несёт отрицательный электрический заряд, который компенсируется объёмным положительным зарядом атмосферы, так что в целом З., по-видимому, электронейтральна (см. Атмосферное электричество).

  В пространстве, ограниченном внешним пределом геофизических полей З. (главным образом в магнитосфере и атмосфере), происходит последовательное и глубокое изменение первичных космических факторов — поглощение и преобразование солнечных и галактических космических лучей, солнечного ветра, рентгеновского, ультрафиолетового, оптического и радиоизлучений Солнца, что имеет важное значение для процессов, протекающих на земной поверхности. Задерживая большую часть жёсткой электромагнитной и корпускулярной радиации, магнитосфера и особенно атмосфера защищают от их смертоносного воздействия живые организмы.

  З. получает 1,7-1017 г дж/сек (или 5,4 X 1024 дж/год) лучистой энергии Солнца, но лишь около 50% этого количества достигает поверхности З. и служит главным источником энергии большинства происходящих на ней процессов.

  Поверхность З., гидросферу, а также прилегающие слои атмосферы и земной коры объединяют под названием географической, или ландшафтной, оболочки. Географическая оболочка явилась ареной возникновения жизни, развитию которой способствовало наличие на З. определённых физических и химических условий, необходимых для синтеза сложных органических молекул. Прямое или косвенное участие живых организмов во многих геохимических процессах со временем приобрело глобальные масштабы и качественно изменило географическую оболочку, преобразовав химический состав атмосферы, гидросферы и отчасти земной коры. Глобальный эффект в ход природных процессов вносит и деятельность человека. Ввиду громадного значения живого вещества как геологического агента вся сфера распространения жизни и биогенных продуктов была названа биосферой.

  Современные знания о З., её форме, строении и месте во Вселенной формировались в процессе долгих исканий. Ещё в глубокой древности делалось много попыток дать общее представление о форме З. Индусы, например, верили, что З. имеет форму лотоса. Вавилоняне, как и многие др. народы, считали З. плоским диском, окруженным водой. Однако ещё около 3 тыс. лет назад начали формироваться и правильные представления. Халдеи первыми заметили на основании наблюдений лунных затмений, что З. — шарообразна. Пифагор, Парменид (6—5 вв.(века) до н. э.(наша эра)) и Аристотель (4 в. до н. э.(наша эра)) пытались дать этому научное обоснование. Эратосфен (3 в. до н. э.(наша эра)) сделал первую попытку определить размеры З. по длине дуги меридиана между городами Александрией и Сиеной (Африка). Большинство античных учёных считало З. центром мира. Наиболее полно разработал эту геоцентрическую концепцию Птолемей во 2 в. Однако значительно раньше Аристарх Самосский (4—3 вв.(века) до н. э.(наша эра)) развивал гелиоцентрические представления, считая центром мира Солнце. В средние века представления о шарообразности З. и её движении отрицались, как противоречащие священному писанию, и объявлялись ересью. Идея шарообразности З. вновь завоевала признание лишь в эпоху Возрождения, с началом Великих географических открытий. В 1543 Коперник научно обосновал гелиоцентрическую систему мира, согласно которой З. и др. планеты обращаются вокруг Солнца. Но этому учению пришлось выдержать длительную жестокую борьбу с геоцентрической системой, которую продолжала поддерживать христианская церковь. С этой борьбой связаны такие трагические события, как сожжение Дж. Бруно и вынужденное отречение от гелиоцентрических представлений Г. Галилея. Окончательное утверждение гелиоцентрической системы обязано открытию в начале 17 в. И. Кеплером законов движения планет и обоснованием в 1687 И. Ньютоном закона всемирного тяготения.

  Структура «твёрдой» З. была выяснена главным образом в 20 в. благодаря достижениям сейсмологии.

  Открытие радиоактивного распада элементов привело к коренному пересмотру многих фундаментальных концепций. В частности, представление о первоначально огненно-жидком состоянии З. было заменено идеями о её образовании из скоплений холодных твёрдых частиц (см. Шмидта гипотеза). На основе радиоактивного распада были разработаны также методы определения абсолютного возраста горных пород, позволившие объективно оценивать длительность истории З. и скорость процессов, протекающих на её поверхности и в недрах.

  Во 2-й половине 20 в. в результате использования ракет и спутников сформировались представления о верхних слоях атмосферы и магнитосфере.

  З. изучают многие науки. Фигурой и размерами З. занимается геодезия, движениями З. как небесного тела — астрономия, силовыми полями — геофизика (отчасти астрофизика), которая изучает также физическое состояние вещества З. и физические процессы, протекающие во всех геосферах. Законы распределения химических элементов З. и процессы их миграции исследует геохимия. Вещественный состав литосферы и историю сё развития изучает комплекс геологических наук. Природные явления и процессы, происходящие в географической оболочке и биосфере, являются областью наук географических и биологических циклов. Земных проблем касаются также науки, изучающие законы взаимодействия природы и общества.

  II. Земля как планета.

  З. — третья по расстоянию от Солнца большая планета Солнечной системы. Масса З. равна 5976·1021 кг, что составляет 1/448 долю массы больших планет и 1/330000 массы Солнца. Под действием притяжения Солнца З., как и др. тела Солнечной системы, обращается вокруг него по эллиптической (мало отличающейся от круговой) орбите. Солнце расположено в одном из фокусов эллиптической орбиты З., вследствие чего расстояние между З. и Солнцем в течение года меняется от 147,117 млн. кмперигелии) до 152,083 млн. кмафелии). Большая полуось орбиты З., равная 149,6 млн. км, принимается за единицу при измерении расстояний в пределах Солнечной системы (см. Астрономическая единица). Скорость движения З. по орбите, равная в среднем 29,765 км/сек, колеблется от 30,27 км/сек (в перигелии) до 29,27 км/сек (в афелии). Вместе с Солнцем З. участвует также в движении вокруг центра Галактики, период галактического обращения составляет около 200 млн. лет, средняя скорость движения 250 км/сек. Относительно ближайших звёзд Солнце вместе с З. Движется со скоростью ~ 19,5 км/сек в направлении созвездия Геркулеса.

  Период обращения З. вокруг Солнца, называемый годом, имеет несколько различную величину в зависимости от того, по отношению к каким телам или точкам небесной сферы рассматривается движение З. и связанное с ним кажущееся движение Солнца по небу. Период обращения, соответствующий промежутку времени между двумя прохождениями Солнца через точку весеннего равноденствия, называется тропическим годом. Тропический год положен в основу календаря, он равен 365,242 средних солнечных суток.

  Плоскость земной орбиты (плоскость эклиптики) наклонена в современную эпоху под углом 1,6° к т. н. Лапласа неизменяемой плоскости, перпендикулярной главному вектору момента количества движения всей Солнечной системы. Под действием притяжения др. планет положение плоскости эклиптики, а также форма земной орбиты медленно изменяются на протяжении миллионов лет. Наклон эклиптики к плоскости Лапласа при этом меняется от 0° до 2,9°, а эксцентриситет земной орбиты от 0 до 0,067. В современную эпоху эксцентриситет равен 0,0167, убывая на 4·10-7 в год. Если смотреть на З., поднявшись над Северным полюсом, то орбитальное движение З. Происходит против часовой стрелки, т. е. в том же направлении, что и её осевое вращение, и обращение Луны вокруг З.

  Естественный спутник З. — Луна обращается вокруг З. по эллиптической орбите на среднем расстоянии 384 400 км (~60,3 среднего радиуса З.). Масса Луны составляет 1:81,5 долю массы З. (73,5·1021 кг). Центр масс системы Земля — Луна отстоит от центра З. на 3/4 её радиуса. Оба тела — З. и Луна — обращаются вокруг центра масс системы. Отношение массы Луны к массе З. — наибольшее среди всех планет и их спутников в Солнечной системе, поэтому систему З. — Луна часто рассматривают как двойную планету.

  З. имеет сложную форму, определяемую совместным действием гравитации, центробежных сил, вызванных осевым вращением З., а также совокупностью внутренних и внешних рельефообразующих сил. Приближённо в качестве формы (фигуры) З. принимают уровенную поверхность гравитационного потенциала (т. е. поверхность, во всех точках перпендикулярную к направлению отвеса), совпадающую с поверхностью воды в океанах (при отсутствии волн, приливов, течений и возмущений, вызванных изменением атмосферного давления). Эту поверхность называют геоидом. Объём, ограниченный этой поверхностью, считается объёмом З. (т. о., в него не входит объём той части материков, которая расположена выше уровня моря). Средним радиусом З. называют радиус шара того же объёма, что и объём геоида. Для решения многих научных и практических задач геодезии, картографии и др. в качестве формы З. принимают земной эллипсоид. Знание параметров земного эллипсоида, его положения в теле З., а также гравитационного поля Земли имеет большое значение в астродинамике, изучающей законы движения искусственных космических тел. Эти параметры изучаются путём наземных астрономо-геодезических и гравиметрических измерений (см. Геодезия, Гравиметрия) и методами спутниковой геодезии.

  Вследствие вращения З. точки экватора имеют скорость 465 м/сек, а точки, расположенные на широте j — скорость 465cosj (м/сек), если считать З. шаром. Зависимость линейной скорости вращения, а следовательно, и центробежной силы от широты приводит к различию значений ускорения силы тяжести на разных широтах (см. табл. 4).

  Вращение З. вокруг своей оси вызывает смену дня и ночи на её поверхности. Период вращения З. определяет единицу времени — сутки. Ось вращения З. отклонена от перпендикуляра к плоскости эклиптики на 23° 26,5' (в середине 20 в.); в современную эпоху этот угол уменьшается на 0,47“ за год. При движении З. по орбите вокруг Солнца её ось вращения сохраняет почти постоянное направление в пространстве. Это приводит к смене времён года. Гравитационное влияние Луны, Солнца, планет вызывает длительные периодические изменения эксцентриситета орбиты и наклона оси З., что является одной из причин многовековых изменений климата.

  Табл. 4. — Геометрические и физические характеристики Земли

Экваториальный радиус

6378,160 км

Полярный радиус

6356,777 км

Сжатие земного эллипсоида

1:298,25

Средний радиус

6371,032 км

Длина окружности экватора

40075,696 км

Поверхность

510,2 ×106 км2

Объём

1,083 ×1012 км3

Масса

5976 × 1021 кг

Средняя плотность

5518 кг/м3

Ускорение силы тяжести (на уровне моря)

 

  а) на экваторе

9,78049 м/сек2

  б) на полюсе

9,83235 м/сек2

  в) стандартное

9,80665 м/сек2

Момент инерции относительно оси вращения

8,104 × 1037 кг × м2

  Период вращения З. систематически увеличивается под воздействием лунных и в меньшей степени солнечных приливов (см. Вращение Земли). Притяжение Луны создаёт приливные деформации как атмосферы и водной оболочки, так и «твёрдой» З. Они направлены к притягивающему телу и, следовательно, перемещаются по З. при её вращении. Приливы в земной коре имеют амплитуду до 43 см, в открытом океане — не более 1м, в атмосфере они вызывают изменение давления в несколько сот н/м2 (несколько мм рт. ст.). Приливное трение, сопровождающее движение приливов, приводит к потере системой Земля — Луна энергии и передаче момента количества движения от З. к Луне. В результате вращение З. замедляется, а Луна удаляется от З. Изучение месячных и годичных колец роста у ископаемых кораллов позволило оценить число суток в году в прошлые геологические эпохи (до 600 млн. лет назад). Результаты исследований говорят о том, что период вращения З. вокруг оси увеличивается в среднем на несколько м/сек за столетие (500 млн. лет назад длительность суток составляла 20,8 ч). Фактическое замедление скорости вращения З. несколько меньше того, которое соответствует передаче момента Луне. Это указывает на вековое уменьшение момента инерции З., по-видимому, связанное с ростом плотного ядра З. либо с перемещением масс при тектонических процессах. Скорость вращения З. несколько меняется в течение года также вследствие сезонных перемещений воздушных масс и влаги. Наблюдения траекторий искусственных спутников З. позволили с высокой точностью установить, что сплюснутость З. несколько больше той, которая соответствует современной скорости её вращения и распределению внутренних масс. По-видимому, это объясняется высокой вязкостью земных недр, приводящей к тому, что при замедлении вращения З. е