Жизнеобеспечение
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Жизнеобеспечение

Жизнеобеспечение в космическом полёте, системы жизнеобеспечения (СЖО), комплекс мероприятий, направленных на обеспечение жизнедеятельности экипажа космического корабля на протяжении полёта. Верхние слои атмосферы Земли и тем более космическое пространство, условия на поверхности планет Солнечной системы непригодны для жизни высокоорганизованных существ, включая человека. Поэтому жизнь и деятельность человека в космическом пространстве может быть обеспечена созданием в космических кораблях, на искусственных спутниках Земли или планетных станциях искусственной среды обитания, близкой к оптимальной области диапазона жизни на Земле, в её биосфере. Это относится как к воздушной среде — искусственной атмосфере корабля, так и к тем элементам среды, в широком смысле слова, которые необходимы для питания и поддержания водного баланса организма человека.

загрузка...

  Существование человека основано на непрерывном обмене вещества и энергии с окружающей средой. Создание возможностей для этого является функцией СЖО. Т. о., СЖО — комплекс устройств, агрегатов и запасов веществ, обеспечивающих необходимые условия жизнедеятельности экипажа в течение всего полёта. Частные системы (подсистемы) этого комплекса обеспечивают соответствующие им отдельные стороны жизнедеятельности (обмена веществ) организма: питание, водный обмен, газообмен, теплообмен (терморегулирование), отправление естественных надобностей и т. д. Такова типовая структура СЖО в наиболее часто употребляемом узком значении этого термина. СЖО могут быть коллективными (СЖО космических кораблей и планетных станций) и индивидуальными, например автономные СЖО, применяемые вместе со скафандрами.

  В более широком смысле к сфере СЖО иногда относят все остальные устройства и предметы, служащие для обеспечения гигиенических, бытовых, культурных и эстетических потребностей экипажа. Необходимость наиболее полного удовлетворения этих потребностей существенно возрастает с увеличением продолжительности пребывания экипажа в космосе, когда эти стороны деятельности человека могут приобретать значение жизненно важных факторов. Частные СЖО делятся на нерегенеративные, предусматривающие создание бортовых запасов пищи, воды, кислорода, и регенеративные, основанные на регенерации этих веществ из продуктов жизнедеятельности человека или др. обитателей космических кораблей и спутников.

  Принципиальная возможность регенерации всех необходимых для жизнедеятельности человека веществ основана на том, что организм выделяет в составе продуктов жизнедеятельности все те химические элементы, которые он получил в виде пищи и воды, а также поглощённый при дыхании кислород. Т. о., практически создаётся замкнутый круговорот необходимых веществ. Регенерация пищевых веществ (из углерода углекислого газа, воды, минеральных элементов мочи и кала) может быть, в принципе, осуществлена при использовании способных к фото- или хемосинтезу автотрофных организмов. Ведутся также поисковые исследования по искусственному синтезу пищевых углеводов из углекислого газа и воды.

  При расчётах СЖО исходят из потребности человека в пище, воде и кислороде, а также из количества выводимых продуктов жизнедеятельности, что вместе составляет материальный баланс обмена веществ в организме человека (см. табл. 1). Помимо этого, в СЖО предусматривается запас воды для туалета, количество которой при нерегенеративных системах и кратковременных полётах около 100 г/чел-сут; при длительных полётах это количество увеличивается до 2—2,5 кг/чел-сут. Вода составляет (в зависимости от количества её для туалетных надобностей) 60—80% от массы запасаемых веществ. Поэтому регенеративные системы водообеспечения делают весовой баланс СЖО ниже, чем СЖО с нерегенеративными системами (пропорционально числу членов экипажа и длительности полёта). Исходя из этого, при расчётах СЖО материальный баланс измеряется в чел-сут.

  Табл. 1. — Примерный материальный баланс обмена веществ человека

Потребление,
г/чел-сут

Выделение,
 г/чел-сут

Пища

500

Углекислый газ

930

Кислород

800

Водяные пары

840

Воды

2200

Моча

1500

 

 

Кал

230

Итого

3500

Итого

3500

  Разнообразием принципиальных подходов и решений отличается система обеспечения кислородом (см. табл. 2). Приведённые в таблице методы регенерации кислорода являются лишь наиболее разработанными и не исчерпывают возможных технологических принципов регенерации. Методика и аппаратура для регенерации кислорода электролизом воды позволяет обеспечить газообмен человека с помощью установки, которая весит около 30 кг, при электрической мощности около 10 вт на 1 л кислорода. Биологическая регенерация кислорода может быть осуществлена фотосинтезирующими одноклеточными водорослями, из которых наиболее изучена хлорелла. В лабораторных экспериментах длительностью до 60 сут показана возможность обеспечения газообмена человека при объёме культуры водорослей порядка 20—30 л на человека и затрате минеральных солей около 50 г/чел-сут. Такая система одновременно обеспечивает и поглощение выделяемого человеком углекислого газа. В более сложных вариантах фотосинтетической регенеративной системы расход минеральных солей может быть в несколько раз уменьшен в связи с использованием минеральных элементов мочи. В этом случае одновременно обеспечивается наиболее энергоёмкий этап регенерации воды из мочи — испарение. Кроме того, часть биомассы водорослей может быть использована в пищевом рационе человека (до 20% белковой части рациона). Применение хемосинтетических газообменников на основе водородокисляющих бактерий целесообразно при наличии электролизной системы, когда получаемый в ней водород не утилизируется для гидрирования углекислого газа, окиси углерода или метана в приведённых физико-химических процессах. Помимо компенсации убыли кислорода, для поддержания состава атмосферы корабля необходимо также удалять избыток углекислого газа и водяных паров. Двуокись углерода может быть удалена физическими методами (вымораживание, конденсация) и применением щелочных химических поглотителей. Более экономично использовать регенерируемые сорбенты (цеолиты, карбонаты). Попеременная работа двух патронов с цеолитом в режиме «сорбция-десорбция» обеспечивает поглощение углекислого газа, выделяемого 2 членами экипажа при массе установки около 40 кг.

Табл. 2. — Основные технологические принципы систем регенерации кислорода,

Нерегенеративные системы

физические

физико-химические

химические

Формы запасае-
мого  кислорода

Молекуляр-

ный кислород: газообразный, жидкий

Химически связанный в форме воды

Химически связанный в составе: перекисей, надперекисей и озонидов щелочных металлов, перхлоратов, перекиси водорода

Способы мобили-
зации запаса

Ступенчатая редукция газа высокого давления: испарения сжиженного газа и редукция

Электролиз воды (свободной или связанной фосфорным ангидридом)

Химическое разложение кислородных соединений металлов при поглощении ими воды и углекислоты , каталитическое разложение перекиси водорода

Источники энергии

Внутренняя энергия сжатого или сжиженного газа

Внешние источники энергии

Энергия экзотермических реакций

Регенеративные системы

Физико-химические

Биологические

Источники кислорода

Углекислый газ и вода, выделяемые человеком как продукты окисления пищевых веществ

Углекислый газ и вода, выделяемые человеком как продукты окисления пищевых веществ

Методы регенера-

ции

Электролиз воды: прямое восстановление углекислого газа водородом до углерода и воды с последующим электролизом воды, восстановление углекислого газа водородом до метана  (или окиси углерода) и воды с последующим электролизом воды

Фотосинтез зеленых растений, хемосинтез автотрофных бактерий (напр., водородоокисляющих)

Форма потребляе-

мой энергии

Тепловая, электрическая

Для фотосинтеза –  световая, для хемосинтеза – электрическая (для получения водорода)

  Избыток водяных паров из воздуха может удаляться с помощью нерегенерируемых химических поглотителей, регенерируемых сорбентов (цеолиты), а также физическими методами — вымораживанием и конденсацией. В существующих космических кораблях часть водяных паров конденсируется на холодных поверхностях жидкостно-воздушных теплообменников, входящих в систему терморегулирования обитаемых кабин.

  Частные СЖО — регенерации кислорода, удаления углекислого газа и воды — составляют единый комплекс обеспечения состава атмосферы корабля. Иногда к этой системе относят также систему терморегулирования и фильтры очистки воздуха от вредных примесей. Функции этих систем могут выполняться отдельными независимыми устройствами. Так, в частности, была решена СЖО атмосферы в американских кораблях «Меркурий», «Джемини» и «Аполлон», основанная на запасах кислорода, нерегенерируемых поглотителей углекислого газа и водяных паров. Химические системы обеспечивают сопряженность рассматриваемых процессов в пределах одной системы. Именно такое решение было использовано в сов.(советский) кораблях «Восток», «Восход» и «Союз», где применялась нерегенеративная система на основе надперекиси щелочного металла. Выделение кислорода регенеративным веществом связано с вполне определёнными количествами поглощаемой воды и углекислого газа (рис.).

  Система водообеспечения основывается на запасах воды. В космическом корабле «Аполлон» питьевая вода вырабатывалась также из запасов кислорода и водорода, «сжигавшегося» в электрохимических генераторах (топливных элементах) для получения электроэнергии. Разработаны различные физико-химические методы регенерации воды из конденсата мочи и атмосферной влаги. Конденсат атмосферных паров достаточно эффективно очищается от неизбежных органических примесей каталитическим окислением, а также с помощью ионообменных смол и углей. В наиболее разработанных методах регенерации воды из мочи используются режимы испарения при различных давлении и температуре, с последующим каталитическим окислением загрязняющих примесей в паровой фазе и очисткой получаемого конденсата сорбентами. Данные методы позволяют регенерировать большую часть потребляемой воды, а при дальнейшем их совершенствовании — добиться практически замкнутого цикла её регенерации.

  В отличие от предыдущих систем, обеспечение пищей не имеет ближайших перспектив перехода к регенеративным системам. Запасы пищи в космическом корабле состоят из продуктов и готовых блюд, консервированных в их естественном состоянии или в обезвоженном виде (см. Лиофилизация). Регенерация пищевых веществ возможна на основе использования фотосинтезирующих зелёных растений. Поскольку при этом также решается задача поглощения углекислого газа и регенерации воды, то возможно создание СЖО по типу закрытой экологической системы, основанной на замкнутом биологическом круговороте ограниченного количества вещества. Нужные для человека вещества непрерывно воссоздаются в такой системе благодаря жизнедеятельности растений, животных и микроорганизмов. Для этого следует расположить комплекс необходимых организмов (см. Биокомплекс) в такую функциональную замкнутую цепь, включающую и человека, где «выходные» характеристики предыдущего звена соответствуют параметрам «входа» последующего. В результате такой организации материально-энергетических отношений между элементами системы возникает новое качество — целостная система высшего порядка, обладающая свойствами закрытой термодинамической системы. Такая система в принципе способна к автономному существованию без поступления вещества извне, насколько это позволит степень согласованности входных и выходных характеристик смежных звеньев системы. При этом впервые возникает ситуация, когда существование самой системы становится в зависимость от жизнедеятельности человека как одного из её функциональных элементов. Эта зависимость настолько велика, что привычное представление о СЖО, как о чём-то внешнем по отношению к человеку, теряет своё основание, поскольку человек здесь является объектом обеспечения в той же мере, в какой он сам необходим в качестве составной части системы как целого. Это показывает всю условность термина СЖО по отношению к закрытым экологическим системам, включающим человека.

  Лит.: Проблемы космической биологии, т. 5—7, Л. — М., 1967; Космическая биология и медицина, М., 1966.

  О. Г. Газенко.

Принципиальная схема системы регенерации и кондиционирования воздуха корабля — спутника «Восток»: 1 — вентилятор; 2, 3, 4 — регенераторы с регулирующим устройством; 5, 6 — осушители; 7, 8 — краны с ручным управлением; 9 — автоматический кран; 10 — жидкостно-воздушный теплообменник; 11 — шторка радиатора; 12 — исполнительный механизм (привод шторки); 13 — усилитель; 14 — задатчик температуры; 15 — датчик температуры; 16 — сигнализатор и измеритель влажности; 17 — измеритель давления; 18 — измеритель температуры; 19 — приборная доска; 20, 21, 22, 23 — датчики давления, температуры, влажности; 24, 25, 26 — газоанализаторы O2 и CO2; 27 — фильтры вредных примесей; 28 — противопылевой фильтр; 29 — блок терморегулирования.