Динамическое программирование
 
а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
 

Динамическое программирование

Динамическое программирование, раздел математики, посвящённый теории и методам решения многошаговых задач оптимального управления.

  В Д. п. для управляемых процессов среди всех возможных управлений ищется то, которое доставляет экстремальное (наименьшее или наибольшее) значение целевой функции — некоторой числовой характеристике процесса. Под многошаговостью понимают либо многоступенчатую структуру процесса, либо разбиение управления на ряд последовательных этапов (шагов), соответствующих, как правило, различным моментам времени. Т. о., в названии «Д. п.» под «программированием» понимают «принятие решений», «планирование», а слово «динамическое» указывает на существенную роль времени и порядка выполнения операции в рассматриваемых процессах и методах.

  Методы Д. п. являются составной частью методов, используемых в исследовании операций (см. Операций исследование), и применяются как в задачах оптимального планирования, так и при решении различных технических проблем (например, в задачах определения оптимальных размеров ступеней многоступенчатых ракет, в задачах оптимального проектирования прокладки дорог и др.).

  Пусть, например, процесс управления некоторой системой состоит из m шагов (этапов), на i-м шагу управление yi переводит систему из состояния xi-1 в новое состояние xi, которое зависит от xi-1 и yi:

  xi = xi(yi, xi-1).

Т. о., управление у1, у2, ..., уm переводит систему из начального состояния x0 в конечное хm. Требуется выбрать x0 и у1, ..., уm таким образом, чтобы целевая функция F = åmi=1 ji (xi-1, yi) достигла максимального значения F*. Основным методом Д. п. является сведение общей задачи к ряду более простых экстремальных задач. Пользуясь так называемым принципом оптимальности, сформулированным американским математиком Р. Беллманом, легко получить основное функциональное уравнение:

 

и                                                              (k = 2, ..., m - 1)

  f1(x0) = F*,

где

 

  (k = 1, ..., m).

Т. о., метод Д. п. приводит к необходимости решения этой рекуррентной системы функциональных уравнений. В процессе решения последовательность этапов проходится дважды: в приведённом варианте рекуррентной системы в первый раз от конца к началу (находятся оптимальные значения F* и х*0), второй раз — от начала к концу (находятся оптимальные управления y*1, ..., у*m).

  Методы Д. п. находят применение не только в дискретных, но и в непрерывных управляемых процессах, например в таких процессах, когда решения надо принимать в каждый момент некоторого интервала времени. Д. п. дало новый подход к задачам вариационного исчисления.

  Хотя метод Д. п. существенно упрощает исходные задачи, однако непосредственное его применение, как правило, сопряжено с громоздкими вычислениями. Для преодоления этих трудностей разрабатываются приближённые методы Д. п.

  Лит.: Беллман Р., Динамическое программирование, пер.(перевод) с англ.(английский), М., 1960; Хедли Дж., Нелинейное и динамическое программирование, пер.(перевод) с англ.(английский), М., 1967.

  В. Г. Карманов.